Nature-inspired query optimisation models for medical information retrieval with relevance feedback

Q3 Engineering
Aditya Jayasimha, Rahul Mudambi, S. Sowmya Kamath
{"title":"Nature-inspired query optimisation models for medical information retrieval with relevance feedback","authors":"Aditya Jayasimha, Rahul Mudambi, S. Sowmya Kamath","doi":"10.1504/ijaip.2023.133255","DOIUrl":null,"url":null,"abstract":"Medical information retrieval (MedIR) involves retrieving relevant medical-related information from a set of medical documents for a particular user query. As the volume of medical records grows, the challenging problem is determining those documents which best suiting a given query by considering user satisfaction. Statistical term weighting and probabilistic approaches for this purpose have several limitations. The gap between information need and user query can be addressed through query optimisation and relevance feedback. In this paper, we propose a document retrieval framework that incorporates query optimisation using techniques like genetic algorithm, particle swarm optimisation (PSO), and global swarm optimisation (GSO). Further, we use relevance feedback methods to reformulate the user query. The proposed techniques are applied to datasets with predefined relevance judgments to perform quantitative validation. Experimental results using the relevance judgements available in the University of Glasgow's Medline collection underscored the significant improvement achieved using BM25 scores as the fitness function.","PeriodicalId":38797,"journal":{"name":"International Journal of Advanced Intelligence Paradigms","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Intelligence Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijaip.2023.133255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Medical information retrieval (MedIR) involves retrieving relevant medical-related information from a set of medical documents for a particular user query. As the volume of medical records grows, the challenging problem is determining those documents which best suiting a given query by considering user satisfaction. Statistical term weighting and probabilistic approaches for this purpose have several limitations. The gap between information need and user query can be addressed through query optimisation and relevance feedback. In this paper, we propose a document retrieval framework that incorporates query optimisation using techniques like genetic algorithm, particle swarm optimisation (PSO), and global swarm optimisation (GSO). Further, we use relevance feedback methods to reformulate the user query. The proposed techniques are applied to datasets with predefined relevance judgments to perform quantitative validation. Experimental results using the relevance judgements available in the University of Glasgow's Medline collection underscored the significant improvement achieved using BM25 scores as the fitness function.
基于相关性反馈的医学信息检索的自然启发查询优化模型
医疗信息检索(MedIR)涉及为特定用户查询从一组医疗文档中检索相关的医疗相关信息。随着医疗记录数量的增长,一个具有挑战性的问题是,通过考虑用户满意度来确定最适合给定查询的文档。用于此目的的统计项加权和概率方法有几个限制。信息需求和用户查询之间的差距可以通过查询优化和相关性反馈来解决。在本文中,我们提出了一个文档检索框架,该框架结合了使用遗传算法、粒子群优化(PSO)和全局群优化(GSO)等技术的查询优化。此外,我们使用相关反馈方法来重新表述用户查询。所提出的技术应用于具有预定义相关性判断的数据集,以执行定量验证。使用格拉斯哥大学Medline收集的相关性判断的实验结果强调了使用BM25分数作为适应度函数所取得的显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信