Automatic face enhancement technique using sigmoid normalisation based on single scale Retinex algorithm

Q3 Engineering
A. Baskar, T. Gireesh Kumar
{"title":"Automatic face enhancement technique using sigmoid normalisation based on single scale Retinex algorithm","authors":"A. Baskar, T. Gireesh Kumar","doi":"10.1504/ijaip.2023.133252","DOIUrl":null,"url":null,"abstract":"The identical faces look dissimilar due to the change of illumination and it leads to incorrect results in face detection. In general, The Retinex algorithm improves visual quality by attaining good dynamic range and colour constancy. This work, a single-scale Retinex (SSR) algorithm based on sigmoid normalisation is proposed. The proposed normalisation suppresses the impact of outlier's data and improves the enhancement. The former min-max normalisation leads to loss of information and focused on specific parts of the normalised range. The SSR computes the reflectance values from the input image in different colour space. Followed, the sigmoid normalisation achieves good dynamic range compression through contrast factor (C) from estimated reflectance value. The performance of the proposed algorithm is validated in MUCT and IMM database. The experimental result shows the proposed algorithm attains better enhancement in contrast factor (C) between 40-50 scales under different illumination.","PeriodicalId":38797,"journal":{"name":"International Journal of Advanced Intelligence Paradigms","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Intelligence Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijaip.2023.133252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The identical faces look dissimilar due to the change of illumination and it leads to incorrect results in face detection. In general, The Retinex algorithm improves visual quality by attaining good dynamic range and colour constancy. This work, a single-scale Retinex (SSR) algorithm based on sigmoid normalisation is proposed. The proposed normalisation suppresses the impact of outlier's data and improves the enhancement. The former min-max normalisation leads to loss of information and focused on specific parts of the normalised range. The SSR computes the reflectance values from the input image in different colour space. Followed, the sigmoid normalisation achieves good dynamic range compression through contrast factor (C) from estimated reflectance value. The performance of the proposed algorithm is validated in MUCT and IMM database. The experimental result shows the proposed algorithm attains better enhancement in contrast factor (C) between 40-50 scales under different illumination.
基于单尺度Retinex算法的s形归一化人脸自动增强技术
由于光照的变化,相同的人脸看起来不一样,导致人脸检测结果不正确。总的来说,Retinex算法通过获得良好的动态范围和色彩稳定性来提高视觉质量。本文提出了一种基于s形归一化的单尺度Retinex (SSR)算法。提出的归一化方法抑制了异常值数据的影响,提高了增强效果。前一种最小-最大归一化会导致信息丢失,并集中在归一化范围的特定部分。SSR计算输入图像在不同色彩空间中的反射率值。其次,s型归一化通过估计反射率值的对比度因子(C)实现了良好的动态范围压缩。在MUCT和IMM数据库中验证了该算法的性能。实验结果表明,在不同光照条件下,该算法在40 ~ 50尺度之间的对比度因子(C)增强效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信