Yannick De Koninck, Charles Caer, Didit Yudistira, Marina Baryshnikova, Huseyin Sar, Saroj Patra, Ping-Yi Hsieh, Nadezda Kuznetsova, Davide Colucci, Alexey Milenin, Andualem Yimam, Geert Morthier, Dries Van Thourhout, Peter Verheyen, Marianna Pantouvaki, Bernardette Kunert, Joris Van Campenhout
{"title":"GaAs nano-ridge laser diodes fully fabricated in a 300 mm CMOS pilot line","authors":"Yannick De Koninck, Charles Caer, Didit Yudistira, Marina Baryshnikova, Huseyin Sar, Saroj Patra, Ping-Yi Hsieh, Nadezda Kuznetsova, Davide Colucci, Alexey Milenin, Andualem Yimam, Geert Morthier, Dries Van Thourhout, Peter Verheyen, Marianna Pantouvaki, Bernardette Kunert, Joris Van Campenhout","doi":"10.21203/rs.3.rs-3187756/v1","DOIUrl":null,"url":null,"abstract":"Abstract Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute, and sense the world [1,2,3,4,5,6]. However, the lack of highly scalable, native CMOS-integrated light sources is one of the main factors hampering its widespread adoption. Despite significant progress in hybrid and heterogeneous integration of III-V light sources on silicon [7,8,9,10,11,12], monolithic integration by direct epitaxial growth of III-V materials remains the pinnacle in realizing cost-effective on-chip light sources. Here, we report the first electrically driven GaAs-based multi-quantum-well laser diodes fully fabricated on 300 mm Si wafers in a CMOS pilot manufacturing line. GaAs nano-ridge waveguides with embedded p-i-n diodes, InGaAs quantum wells and InGaP passivation layers are grown with high quality at wafer scale, leveraging selective-area epitaxy with aspect-ratio trapping. After III-V facet patterning and standard CMOS contact metallization, room-temperature continuous-wave lasing is demonstrated at wavelengths around 1020 nm in more than three hundred devices across a wafer, with threshold currents as low as 5 mA, output powers beyond 1 mW, laser linewidths down to 46 MHz, and laser operation up to 55 °C. These results illustrate the potential of the III-V/Si nano-ridge engineering concept for the monolithic integration of laser diodes in a Si photonics platform, enabling future cost-sensitive high-volume applications in optical sensing, interconnects and beyond.","PeriodicalId":500086,"journal":{"name":"Research Square (Research Square)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Square (Research Square)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-3187756/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute, and sense the world [1,2,3,4,5,6]. However, the lack of highly scalable, native CMOS-integrated light sources is one of the main factors hampering its widespread adoption. Despite significant progress in hybrid and heterogeneous integration of III-V light sources on silicon [7,8,9,10,11,12], monolithic integration by direct epitaxial growth of III-V materials remains the pinnacle in realizing cost-effective on-chip light sources. Here, we report the first electrically driven GaAs-based multi-quantum-well laser diodes fully fabricated on 300 mm Si wafers in a CMOS pilot manufacturing line. GaAs nano-ridge waveguides with embedded p-i-n diodes, InGaAs quantum wells and InGaP passivation layers are grown with high quality at wafer scale, leveraging selective-area epitaxy with aspect-ratio trapping. After III-V facet patterning and standard CMOS contact metallization, room-temperature continuous-wave lasing is demonstrated at wavelengths around 1020 nm in more than three hundred devices across a wafer, with threshold currents as low as 5 mA, output powers beyond 1 mW, laser linewidths down to 46 MHz, and laser operation up to 55 °C. These results illustrate the potential of the III-V/Si nano-ridge engineering concept for the monolithic integration of laser diodes in a Si photonics platform, enabling future cost-sensitive high-volume applications in optical sensing, interconnects and beyond.