Determination of the exact daily gas intake according to the level of formation completion in the underground gas storage

IF 0.3 Q4 ENGINEERING, PETROLEUM
Nafta-Gaz Pub Date : 2023-09-01 DOI:10.18668/ng.2023.09.04
Nargiz R. Akhundova, Ofeliya Aliyeva
{"title":"Determination of the exact daily gas intake according to the level of formation completion in the underground gas storage","authors":"Nargiz R. Akhundova, Ofeliya Aliyeva","doi":"10.18668/ng.2023.09.04","DOIUrl":null,"url":null,"abstract":"This article derives the formula for the exact daily gas intake of a gas-dynamic incomplete flatbed gas injection well according to the level of formation completion in the underground gas storage (UGS). In natural gas fields and underground gas storages, the formation is incompletely saturated with hydrocarbons due to the level of completion of the formation. In the upper part of the formation there is a flat-radial simple leakage flow through the gas well, and in the unopened part there is a complex curved radial flow. Separate formulas have been developed for the exact daily volume consumption of hydrocarbon gas injected into these wells. For this purpose, gas dynamics problems for two different stationary gas flows have been solved. By adding up the daily volume of gas consumption according to these formulas, the formula of full daily consumption for replaced well No. 2 was obtained. Which is equal to the exact full daily volume consumption of flatbed well No. 1. Fluids and gases are known to enrich the water supply and field system. The boundaries of the latter are the contours of the pressure and the flow. The water pressure in the reservoir was determined by changing the sum of the volume of the cavity at the edge of the reservoir, the capacity of the created gas and the amount of injected gas.","PeriodicalId":45266,"journal":{"name":"Nafta-Gaz","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nafta-Gaz","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18668/ng.2023.09.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

Abstract

This article derives the formula for the exact daily gas intake of a gas-dynamic incomplete flatbed gas injection well according to the level of formation completion in the underground gas storage (UGS). In natural gas fields and underground gas storages, the formation is incompletely saturated with hydrocarbons due to the level of completion of the formation. In the upper part of the formation there is a flat-radial simple leakage flow through the gas well, and in the unopened part there is a complex curved radial flow. Separate formulas have been developed for the exact daily volume consumption of hydrocarbon gas injected into these wells. For this purpose, gas dynamics problems for two different stationary gas flows have been solved. By adding up the daily volume of gas consumption according to these formulas, the formula of full daily consumption for replaced well No. 2 was obtained. Which is equal to the exact full daily volume consumption of flatbed well No. 1. Fluids and gases are known to enrich the water supply and field system. The boundaries of the latter are the contours of the pressure and the flow. The water pressure in the reservoir was determined by changing the sum of the volume of the cavity at the edge of the reservoir, the capacity of the created gas and the amount of injected gas.
根据地下储气库的地层完井水平确定每日确切的进气量
本文根据地下储气库地层完井程度,推导出气动力不完全平板注气井每日确切进气量的计算公式。在天然气田和地下储气库中,由于地层的完井水平,地层中烃类不完全饱和。在地层上部,通过气井的是一种平面径向的简单泄漏流,而在未打开的部分,存在一种复杂的弯曲径向流。对于注入这些井的烃类气体的确切日消耗量,已经开发出单独的公式。为此,求解了两种不同固定气流的气体动力学问题。根据上述公式,将2号井的日用气量相加,得到2号井的全日用气量公式。这正好等于1号平台式井每天的全部用量。流体和气体是已知的丰富供水和现场系统。后者的边界是压力和流量的轮廓。储层水压是通过改变储层边缘空腔的体积、产生的气体容量和注入的气体量的总和来确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nafta-Gaz
Nafta-Gaz ENGINEERING, PETROLEUM-
CiteScore
0.80
自引率
60.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信