George Malczyk, Noel Gourmelen, Mauro Werder, Martin Wearing, Dan Goldberg
{"title":"Constraints on subglacial melt fluxes from observations of active subglacial lake recharge","authors":"George Malczyk, Noel Gourmelen, Mauro Werder, Martin Wearing, Dan Goldberg","doi":"10.1017/jog.2023.70","DOIUrl":null,"url":null,"abstract":"Abstract Active subglacial lakes provide a rare glimpse of the subglacial environment and hydrological processes at play. Several studies contributed to establishing active subglacial lake inventories and document lake drainage and connection, but few focused on the period between lake drainage when the melt production and transport contribute to the refilling of these lakes. In this study, we employ high-resolution CryoSat-2 altimetry data from 2010 to 2021 to compile an inventory of recharging lakes across Antarctica. We extract recharge rates from these lakes, which serve as a lower limit on subglacial melt production. These recharge rates are compared against predictions obtained by routing modelled subglacial meltwater at the ice-sheet's base. Our findings indicate that modelled recharge rates are consistent with observations in all but one of the investigated lakes, providing a lower bound on geothermal heat fluxes. Lake Cook E2 displays recharge rates far exceeding predictions, indicating that processes are taking place that are currently unaccounted for. Considering recharge in hydrologically connected lake networks instead of individually provides a stricter constraint on melt production. Recharge rates extracted from the Thwaites Lake system suggest that subglacial melt production has been underestimated.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"47 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jog.2023.70","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Active subglacial lakes provide a rare glimpse of the subglacial environment and hydrological processes at play. Several studies contributed to establishing active subglacial lake inventories and document lake drainage and connection, but few focused on the period between lake drainage when the melt production and transport contribute to the refilling of these lakes. In this study, we employ high-resolution CryoSat-2 altimetry data from 2010 to 2021 to compile an inventory of recharging lakes across Antarctica. We extract recharge rates from these lakes, which serve as a lower limit on subglacial melt production. These recharge rates are compared against predictions obtained by routing modelled subglacial meltwater at the ice-sheet's base. Our findings indicate that modelled recharge rates are consistent with observations in all but one of the investigated lakes, providing a lower bound on geothermal heat fluxes. Lake Cook E2 displays recharge rates far exceeding predictions, indicating that processes are taking place that are currently unaccounted for. Considering recharge in hydrologically connected lake networks instead of individually provides a stricter constraint on melt production. Recharge rates extracted from the Thwaites Lake system suggest that subglacial melt production has been underestimated.
期刊介绍:
Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.