{"title":"Influence of hot water treatment on nutritional quality attributes of cold stored apple (Malus × domestica)","authors":"AJIT KUMAR SINGH, SHRUTI SETHI, RAM ASREY, RAJU KUMAR","doi":"10.56093/ijas.v93i9.137236","DOIUrl":null,"url":null,"abstract":"The present study was carried out at ICAR-Indian Agricultural Research Institute, New Delhi during 2021–2023 to study the effect of postharvest hot water treatment (HWT) on the nutritional quality attributes of apple [Malus × domestica Borkh.] cv. Royal Delicious. Apple fruits were exposed to hot water at 48, 50, 52 and 54°C for 2, 3, 4 and 5 min. Following the treatment, the fruits were cold stored (2±1°C, 90–95% relative humidity) for 90 days and evaluated for quality changes at every 15 days interval. Our results revealed that HWT of apple fruits at 48°C and 50°C were best for optimum retention of nutritional quality of apple fruits. Exposure of fruits to HWT at 48°C/5 min and 50°C/2 min resulted in least (0.73%, 0.75%) loss of ascorbic acid and anthocyanin content (0.10%, 0.21%), respectively as compared to other temperature-time combinations. At the end of a three month storage period, under control treatment, fruits exhibited 9.56% reduction of antioxidant (AOX) activity in comparison to 0.17–2.21% reduction in HWT apples. The maximum loss in quality attributes was noticed at highest temperature-time exposure (54°C/5 min). Thus, it was observed that the right combination of temperature and time for HWT is crucial to maintain fruit quality attributes without compromising nutritional value.","PeriodicalId":13499,"journal":{"name":"Indian Journal of Agricultural Sciences","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Agricultural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56093/ijas.v93i9.137236","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study was carried out at ICAR-Indian Agricultural Research Institute, New Delhi during 2021–2023 to study the effect of postharvest hot water treatment (HWT) on the nutritional quality attributes of apple [Malus × domestica Borkh.] cv. Royal Delicious. Apple fruits were exposed to hot water at 48, 50, 52 and 54°C for 2, 3, 4 and 5 min. Following the treatment, the fruits were cold stored (2±1°C, 90–95% relative humidity) for 90 days and evaluated for quality changes at every 15 days interval. Our results revealed that HWT of apple fruits at 48°C and 50°C were best for optimum retention of nutritional quality of apple fruits. Exposure of fruits to HWT at 48°C/5 min and 50°C/2 min resulted in least (0.73%, 0.75%) loss of ascorbic acid and anthocyanin content (0.10%, 0.21%), respectively as compared to other temperature-time combinations. At the end of a three month storage period, under control treatment, fruits exhibited 9.56% reduction of antioxidant (AOX) activity in comparison to 0.17–2.21% reduction in HWT apples. The maximum loss in quality attributes was noticed at highest temperature-time exposure (54°C/5 min). Thus, it was observed that the right combination of temperature and time for HWT is crucial to maintain fruit quality attributes without compromising nutritional value.
期刊介绍:
The Indian Journal of Agricultural Sciences publishes papers concerned with the advancement of agriculture throughout the world. It publishes original scientific work related to strategic and applied studies in all aspects of agricultural science and exploited species, as well as reviews of scientific topics of current agricultural relevance.
Specific topics of interest include (but are not confined to): genetic resources, all aspects of crop improvement,crop production,crop protection, physiology, modeling of crop systems, the scientific underpinning of agronomy, engineering solutions, decision support systems, land use, environmental impacts of agriculture and forestry, impacts of climate change, rural biodiversity, experimental design and statistical analysis, the application of new analytical and study methods (including molecular studies) and agricultural economics. The journal also publishes book reviews.
Articles are accepted on the following broad disciplines:
Agric. Engineering & Technology, Agric. Social & Economic Sci., Agronomy, Biometry, Biosciences, Cytology, Ecology, Environmental Sciences, Fertilization, Forestry , Genetics, Horticultural Sciences, Microbiology, Pest, Weed Control etc., Molecular Biology, Plant Pathology, Plant Breeding, Physiology and Biochemistry, Soil Sciences, Special Cultivation Technology, Stress Breeding, Agric. extension, and Cell Biology.