Impact of conservation agriculture on humic acid quality and clay humus complexation under maize (Zea mays)-wheat (Triticum aestivum) and pigeon pea (Cajanus cajan)-wheat cropping systems
ABHISHEK DAS, NAYAN AHMED, T J PURAKAYASTHA, SUNANDA BISWAS, PRASENJIT RAY, BINDER SINGH, T K DAS, RAJESH KUMAR, ACHAL LAMA
{"title":"Impact of conservation agriculture on humic acid quality and clay humus complexation under maize (Zea mays)-wheat (Triticum aestivum) and pigeon pea (Cajanus cajan)-wheat cropping systems","authors":"ABHISHEK DAS, NAYAN AHMED, T J PURAKAYASTHA, SUNANDA BISWAS, PRASENJIT RAY, BINDER SINGH, T K DAS, RAJESH KUMAR, ACHAL LAMA","doi":"10.56093/ijas.v93i9.138932","DOIUrl":null,"url":null,"abstract":"An attempt was made to study the humic acid (HA) quality and clay humus complex in order to generate valuable information regarding soil carbon (C) and recalcitrant carbon variations under conservation agriculture (CA) practices. It is worthwhile to mention that CA has got wider acceptance among researchers and farmers nowadays. A field experiment was conducted in an Inceptisol with three treatments, namely conventional tillage (CT), zero tillage (ZT) without residue and zero tillage with residue (ZT+R) in a maize (Zea mays L.)-wheat (Triticum aestivum L.) (M-W) and pigeon pea (Cajanus cajan L.)-wheat (P-W) cropping system at ICAR-Indian Agricultural Research Institute, New Delhi, with a view to characterize the HA by E4/E6 ratio and total acidity, and to specify the functional groups of clay humus complex. In ZT+R based treatments, lower E4/E6 ratio and total acidity of extracted HA showed higher degree of humification and stability of humic acid carbon (HA-C). The FTIR spectroscopy of the clay-humus complex (as extracted from soil) displayed the presence of a large number of functional groups in ZT+R treatment followed by ZT and CT. It was also observed that the yield of crops was also significantly higher in ZT+R than CT in both the cropping systems except in wheat crops in the M-W system. Therefore, it can be concluded that ZT+R has the potential to enrich the organic carbon (C) quality in soil and increase the aromaticity of HA, leading to carbon stabilization in soils.","PeriodicalId":13499,"journal":{"name":"Indian Journal of Agricultural Sciences","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Agricultural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56093/ijas.v93i9.138932","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An attempt was made to study the humic acid (HA) quality and clay humus complex in order to generate valuable information regarding soil carbon (C) and recalcitrant carbon variations under conservation agriculture (CA) practices. It is worthwhile to mention that CA has got wider acceptance among researchers and farmers nowadays. A field experiment was conducted in an Inceptisol with three treatments, namely conventional tillage (CT), zero tillage (ZT) without residue and zero tillage with residue (ZT+R) in a maize (Zea mays L.)-wheat (Triticum aestivum L.) (M-W) and pigeon pea (Cajanus cajan L.)-wheat (P-W) cropping system at ICAR-Indian Agricultural Research Institute, New Delhi, with a view to characterize the HA by E4/E6 ratio and total acidity, and to specify the functional groups of clay humus complex. In ZT+R based treatments, lower E4/E6 ratio and total acidity of extracted HA showed higher degree of humification and stability of humic acid carbon (HA-C). The FTIR spectroscopy of the clay-humus complex (as extracted from soil) displayed the presence of a large number of functional groups in ZT+R treatment followed by ZT and CT. It was also observed that the yield of crops was also significantly higher in ZT+R than CT in both the cropping systems except in wheat crops in the M-W system. Therefore, it can be concluded that ZT+R has the potential to enrich the organic carbon (C) quality in soil and increase the aromaticity of HA, leading to carbon stabilization in soils.
期刊介绍:
The Indian Journal of Agricultural Sciences publishes papers concerned with the advancement of agriculture throughout the world. It publishes original scientific work related to strategic and applied studies in all aspects of agricultural science and exploited species, as well as reviews of scientific topics of current agricultural relevance.
Specific topics of interest include (but are not confined to): genetic resources, all aspects of crop improvement,crop production,crop protection, physiology, modeling of crop systems, the scientific underpinning of agronomy, engineering solutions, decision support systems, land use, environmental impacts of agriculture and forestry, impacts of climate change, rural biodiversity, experimental design and statistical analysis, the application of new analytical and study methods (including molecular studies) and agricultural economics. The journal also publishes book reviews.
Articles are accepted on the following broad disciplines:
Agric. Engineering & Technology, Agric. Social & Economic Sci., Agronomy, Biometry, Biosciences, Cytology, Ecology, Environmental Sciences, Fertilization, Forestry , Genetics, Horticultural Sciences, Microbiology, Pest, Weed Control etc., Molecular Biology, Plant Pathology, Plant Breeding, Physiology and Biochemistry, Soil Sciences, Special Cultivation Technology, Stress Breeding, Agric. extension, and Cell Biology.