None REETIKA, R P S DALAL, None SOURABH, VIVEK BENIWAL, ANKIT GAVRI, SANJAY KUMAR, RAVI GAUTAM, DESH RAJ CHOUDHARY
{"title":"Exploring the impact of salinity on citrus (Citrus spp.) rootstock seed germination and seedling biomass","authors":"None REETIKA, R P S DALAL, None SOURABH, VIVEK BENIWAL, ANKIT GAVRI, SANJAY KUMAR, RAVI GAUTAM, DESH RAJ CHOUDHARY","doi":"10.56093/ijas.v93i9.139270","DOIUrl":null,"url":null,"abstract":"An experiment was conducted at the screen house of the Department of Horticulture, CCS Haryana Agricultural University, Hisar, Haryana during 2018–19 and 2019–20 to assess the impact of 5 different salinity levels [0.07 (control), 2.5, 4.0, 5.5, and 7.0 dS/m] on the seed germination and biomass of 9 citrus (Citrus spp.) rootstock seedlings (Rough lemon, Pectinifera, Cleopatra mandarin, Rangpur lime, Alemow, Volkamer lemon, NRCC-4, NRCC-3 and CRH-12). Experiment consisted of 45 treatment combinations and 3 replications in a completely randomized design (CRD). Under the influence of soil salinity, the number of days taken for seed germination, seed germination percentage, fresh and dry root and shoot biomass were adversely affected across all rootstocks compared to the control treatment (0.07 dS/m). Among the tested rootstocks, Volkamer lemon exhibited the highest seed germination rate (57%), followed by Rangpur lime (53%) and CRH-12 (50%). Conversely, Pectinifera showed the lowest seed germination percentage (37%), followed by Alemow (43%) at 7 dS/m. The minimum reduction at 7 dS/m over control in fresh shoot and root and dry shoot and root biomass was observed in Rangpur lime (37.7, 16.2, 27.8 and 27.3%, respectively), followed by Volkamer lemon (38.0, 16.2, 28.3 and 28.5%, respectively). On the other hand, Pectinifera exhibited the highest reduction in biomass (51.9, 40.5, 47.0 and 43.9%, respectively), followed by Alemow (45.7, 30.9, 46.5 and 39.9%, respectively). Among all the rootstocks, Rangpur lime, Volkamer lemon and Cleopatra mandarin displayed better tolerance to salinity, exhibiting relatively lower reduction in biomass at the highest salinity level (7 dS/m) compared to the control. Cleopatra mandarin, Rough lemon and NRCC-3 showed a moderate response, while Pectinifera, NRCC-4, and Alemow were found to be less tolerant, exhibiting higher reduction in terms of count of seed germination days, seed germination percentage, fresh and dry root biomass, and shoot biomass at 7 dS/m compared to the control treatment.","PeriodicalId":13499,"journal":{"name":"Indian Journal of Agricultural Sciences","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Agricultural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56093/ijas.v93i9.139270","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An experiment was conducted at the screen house of the Department of Horticulture, CCS Haryana Agricultural University, Hisar, Haryana during 2018–19 and 2019–20 to assess the impact of 5 different salinity levels [0.07 (control), 2.5, 4.0, 5.5, and 7.0 dS/m] on the seed germination and biomass of 9 citrus (Citrus spp.) rootstock seedlings (Rough lemon, Pectinifera, Cleopatra mandarin, Rangpur lime, Alemow, Volkamer lemon, NRCC-4, NRCC-3 and CRH-12). Experiment consisted of 45 treatment combinations and 3 replications in a completely randomized design (CRD). Under the influence of soil salinity, the number of days taken for seed germination, seed germination percentage, fresh and dry root and shoot biomass were adversely affected across all rootstocks compared to the control treatment (0.07 dS/m). Among the tested rootstocks, Volkamer lemon exhibited the highest seed germination rate (57%), followed by Rangpur lime (53%) and CRH-12 (50%). Conversely, Pectinifera showed the lowest seed germination percentage (37%), followed by Alemow (43%) at 7 dS/m. The minimum reduction at 7 dS/m over control in fresh shoot and root and dry shoot and root biomass was observed in Rangpur lime (37.7, 16.2, 27.8 and 27.3%, respectively), followed by Volkamer lemon (38.0, 16.2, 28.3 and 28.5%, respectively). On the other hand, Pectinifera exhibited the highest reduction in biomass (51.9, 40.5, 47.0 and 43.9%, respectively), followed by Alemow (45.7, 30.9, 46.5 and 39.9%, respectively). Among all the rootstocks, Rangpur lime, Volkamer lemon and Cleopatra mandarin displayed better tolerance to salinity, exhibiting relatively lower reduction in biomass at the highest salinity level (7 dS/m) compared to the control. Cleopatra mandarin, Rough lemon and NRCC-3 showed a moderate response, while Pectinifera, NRCC-4, and Alemow were found to be less tolerant, exhibiting higher reduction in terms of count of seed germination days, seed germination percentage, fresh and dry root biomass, and shoot biomass at 7 dS/m compared to the control treatment.
期刊介绍:
The Indian Journal of Agricultural Sciences publishes papers concerned with the advancement of agriculture throughout the world. It publishes original scientific work related to strategic and applied studies in all aspects of agricultural science and exploited species, as well as reviews of scientific topics of current agricultural relevance.
Specific topics of interest include (but are not confined to): genetic resources, all aspects of crop improvement,crop production,crop protection, physiology, modeling of crop systems, the scientific underpinning of agronomy, engineering solutions, decision support systems, land use, environmental impacts of agriculture and forestry, impacts of climate change, rural biodiversity, experimental design and statistical analysis, the application of new analytical and study methods (including molecular studies) and agricultural economics. The journal also publishes book reviews.
Articles are accepted on the following broad disciplines:
Agric. Engineering & Technology, Agric. Social & Economic Sci., Agronomy, Biometry, Biosciences, Cytology, Ecology, Environmental Sciences, Fertilization, Forestry , Genetics, Horticultural Sciences, Microbiology, Pest, Weed Control etc., Molecular Biology, Plant Pathology, Plant Breeding, Physiology and Biochemistry, Soil Sciences, Special Cultivation Technology, Stress Breeding, Agric. extension, and Cell Biology.