On the Convergence of Stochastic Gradient Descent for Linear Inverse Problems in Banach Spaces

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Bangti Jin, Željko Kereta
{"title":"On the Convergence of Stochastic Gradient Descent for Linear Inverse Problems in Banach Spaces","authors":"Bangti Jin, Željko Kereta","doi":"10.1137/22m1518542","DOIUrl":null,"url":null,"abstract":"In this work we consider stochastic gradient descent (SGD) for solving linear inverse problems in Banach spaces. SGD and its variants have been established as one of the most successful optimization methods in machine learning, imaging, and signal processing, to name a few. At each iteration SGD uses a single datum, or a small subset of data, resulting in highly scalable methods that are very attractive for large-scale inverse problems. Nonetheless, the theoretical analysis of SGD-based approaches for inverse problems has thus far been largely limited to Euclidean and Hilbert spaces. In this work we present a novel convergence analysis of SGD for linear inverse problems in general Banach spaces: we show the almost sure convergence of the iterates to the minimum norm solution and establish the regularizing property for suitable a priori stopping criteria. Numerical results are also presented to illustrate features of the approach.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1518542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we consider stochastic gradient descent (SGD) for solving linear inverse problems in Banach spaces. SGD and its variants have been established as one of the most successful optimization methods in machine learning, imaging, and signal processing, to name a few. At each iteration SGD uses a single datum, or a small subset of data, resulting in highly scalable methods that are very attractive for large-scale inverse problems. Nonetheless, the theoretical analysis of SGD-based approaches for inverse problems has thus far been largely limited to Euclidean and Hilbert spaces. In this work we present a novel convergence analysis of SGD for linear inverse problems in general Banach spaces: we show the almost sure convergence of the iterates to the minimum norm solution and establish the regularizing property for suitable a priori stopping criteria. Numerical results are also presented to illustrate features of the approach.
Banach空间中线性逆问题的随机梯度下降收敛性
本文研究了用随机梯度下降法求解Banach空间中的线性逆问题。SGD及其变体已被确立为机器学习、成像和信号处理等领域最成功的优化方法之一。在每次迭代中,SGD使用单个数据,或者数据的一个小子集,从而产生高度可伸缩的方法,这对于大规模的逆问题非常有吸引力。然而,迄今为止,基于sgd的反问题方法的理论分析主要局限于欧几里得和希尔伯特空间。本文给出了一般Banach空间中线性逆问题的SGD的收敛性分析:我们证明了迭代到最小范数解的几乎肯定收敛,并建立了合适的先验停止准则的正则化性质。数值结果说明了该方法的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信