Menna M. Abo-Zeid, Muhammad G. Abd El-Moghny, H. Shawkey, A. M. Daher, Amr M. Abdelkader, Mohamed S. El-Deab
{"title":"Metal oxide stabilized zirconia modified bio-derived carbon nanosheets as efficient electrocatalysts for oxygen evolution reaction","authors":"Menna M. Abo-Zeid, Muhammad G. Abd El-Moghny, H. Shawkey, A. M. Daher, Amr M. Abdelkader, Mohamed S. El-Deab","doi":"10.1007/s10800-023-01980-2","DOIUrl":null,"url":null,"abstract":"Abstract Zirconia is a promising candidate for many applications, especially when stabilized with metal oxide nanoparticles such as yttria and ceria. Zirconium oxide-based materials supported on carbon nanomaterials have shown excellent performance electrocatalysts due to their outstanding catalytic activities and high stability. In this work, a one-pot hydrothermal method was used to prepare porous stabilized zirconia nanoparticles with yttria and ceria (YSZ and CSZ) anchored on carbon nanosheets derived from molasses fiber waste as a sustainable source and annealing at various temperatures (MCNSs). The prepared composites YSZ/MCNSs and CSZ/MCNSs exhibit superior oxygen evolution reaction performance in alkaline medium. Various physicochemical analysis techniques such as SEM, EDX, HR-TEM, BET, XRD and XPS are employed to characterize the designed catalysts. The results showed that the doping of molasses fibers exfoliated into 2D nanosheets controlled the growth of the YSZ particles into the nanosize and increased their crystallinity. This improves the electrochemical surface area and stability, and modulates the electronic structure of zirconium, yttrium and cerium which facilitate the adsorption of OH − ions, and all contribute to the higher catalytic activity. Graphical Abstract","PeriodicalId":14887,"journal":{"name":"Journal of Applied Electrochemistry","volume":"43 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10800-023-01980-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Zirconia is a promising candidate for many applications, especially when stabilized with metal oxide nanoparticles such as yttria and ceria. Zirconium oxide-based materials supported on carbon nanomaterials have shown excellent performance electrocatalysts due to their outstanding catalytic activities and high stability. In this work, a one-pot hydrothermal method was used to prepare porous stabilized zirconia nanoparticles with yttria and ceria (YSZ and CSZ) anchored on carbon nanosheets derived from molasses fiber waste as a sustainable source and annealing at various temperatures (MCNSs). The prepared composites YSZ/MCNSs and CSZ/MCNSs exhibit superior oxygen evolution reaction performance in alkaline medium. Various physicochemical analysis techniques such as SEM, EDX, HR-TEM, BET, XRD and XPS are employed to characterize the designed catalysts. The results showed that the doping of molasses fibers exfoliated into 2D nanosheets controlled the growth of the YSZ particles into the nanosize and increased their crystallinity. This improves the electrochemical surface area and stability, and modulates the electronic structure of zirconium, yttrium and cerium which facilitate the adsorption of OH − ions, and all contribute to the higher catalytic activity. Graphical Abstract
期刊介绍:
The Journal of Applied Electrochemistry is the leading journal on technologically orientated aspects of electrochemistry. The interface between electrochemical science and engineering is highlighted, emphasizing the application of electrochemistry to technological development and practice, and documenting properties and data of materials; design factors, design methodologies, scale-up, economics and testing of electrochemical devices and processes. The broad range of technologies includes energy conversion, conservation, and storage, new battery systems, fuel cells, super capacitors, solar cells, power delivery, industrial synthesis, environmental remediation, cell design, corrosion, electrochemical reaction engineering, medical applications of electrochemistry and bio-electrochemistry, the electrochemical treatment of effluents, hydrometallurgy, molten salt and solid state electrochemistry, surface finishing, electroplating, electrodeposition, sensors, and applications of molecular electrochemistry. It also publishes invited reviewed articles, book reviews and news items and a comprehensive electrochemical events calendar.