{"title":"Seepage–Creep Coupling Analysis of Concrete-Face Rockfill Dam Built on Alluvium Foundation","authors":"Lifeng Wen, Li Wu, Yanlong Li","doi":"10.1061/ijgnai.gmeng-8946","DOIUrl":null,"url":null,"abstract":"The foundation and dam body below the seepage-free surface are in a saturated seepage state for a concrete-face rockfill dam (CFRD) built on a deep alluvium foundation. The seepage and stress coupling effect could influence the dam deformation behavior. This study focuses on the seepage–creep coupling behavior of the CFRD on alluvium. The Drucker–Prager (D–P) plastic and time-hardening creep models are used to describe the instantaneous and creep deformations of rockfill and alluvium materials. The back propagation (BP) neural network method is adopted to invert the material creep model parameters. The dam and foundation seepage process is described using Signorini’s type variational inequality method. A seepage–creep coupling analysis method for CFRDs on alluvium is proposed on the basis of the momentum conservation principle and the Kozeny–Carman equation. The deformation mechanism and evolution process of CFRD on alluvium are investigated whilst considering the seepage–creep coupling effect. The influence of the seepage effect on the dam’ long-term deformation is discussed.","PeriodicalId":14100,"journal":{"name":"International Journal of Geomechanics","volume":"286 ","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/ijgnai.gmeng-8946","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The foundation and dam body below the seepage-free surface are in a saturated seepage state for a concrete-face rockfill dam (CFRD) built on a deep alluvium foundation. The seepage and stress coupling effect could influence the dam deformation behavior. This study focuses on the seepage–creep coupling behavior of the CFRD on alluvium. The Drucker–Prager (D–P) plastic and time-hardening creep models are used to describe the instantaneous and creep deformations of rockfill and alluvium materials. The back propagation (BP) neural network method is adopted to invert the material creep model parameters. The dam and foundation seepage process is described using Signorini’s type variational inequality method. A seepage–creep coupling analysis method for CFRDs on alluvium is proposed on the basis of the momentum conservation principle and the Kozeny–Carman equation. The deformation mechanism and evolution process of CFRD on alluvium are investigated whilst considering the seepage–creep coupling effect. The influence of the seepage effect on the dam’ long-term deformation is discussed.
期刊介绍:
The International Journal of Geomechanics (IJOG) focuses on geomechanics with emphasis on theoretical aspects, including computational and analytical methods and related validations. Applications of interdisciplinary topics such as geotechnical and geoenvironmental engineering, mining and geological engineering, rock and blasting engineering, underground structures, infrastructure and pavement engineering, petroleum engineering, engineering geophysics, offshore and marine geotechnology, geothermal energy, lunar and planetary engineering, and ice mechanics fall within the scope of the journal. Specific topics covered include numerical and analytical methods; constitutive modeling including elasticity, plasticity, creep, localization, fracture and instabilities; neural networks, expert systems, optimization and reliability; statics and dynamics of interacting structures and foundations; liquid and gas flow through geologic media, contaminant transport and groundwater problems; borehole stability, geohazards such as earthquakes, landslides and subsidence; soil/rock improvement; and the development of model validations using laboratory and field measurements.