Design and Analysis of a Solar Energy System for a Fruit Harvesting Robot in Pakistan

IF 1.3 Q2 AGRICULTURE, MULTIDISCIPLINARY
Sadaf Zeeshan, Tauseef Aized
{"title":"Design and Analysis of a Solar Energy System for a Fruit Harvesting Robot in Pakistan","authors":"Sadaf Zeeshan, Tauseef Aized","doi":"10.2478/ata-2023-0025","DOIUrl":null,"url":null,"abstract":"Abstract In order to meet the growing agricultural demands, modern machinery needs to be deployed and cheaper energy supply needs to be ensured. With advancements in artificial intelligence, fruit harvesting robots can improve both the quality and productivity of fruit picking and increase orange fruit exports. However, to ensure effective working of the fruit harvesting robot, an energy source that is both efficient and cost-effective is necessary. This paper aims at designing of a solar energy system for a lightweight fruit harvesting robot for orange orchards in Pakistan and conducting a feasibility study for the deployment of the robot for remote agricultural land. The site for fruit harvesting robot employment is decided by irradiance using random forest regression. Solar system sizing is done based on the design and energy requirements of the fruit harvesting robot. The Homer Pro software is used for simulation of the system to analyse the potential of using solar system for fruit harvesting robot in Sargodha, Pakistan. The results show that compared to hybrid system, a stand-alone system is a more cost effective, reliable, and efficient option with a payback time of 3.36 years and levelized cost of energy being $0.085 per unit kWh. This study proves that solar energy is a viable and cheaper solution for using modern agricultural machineries, like fruit harvesting robot, in remote areas in developing countries, like Pakistan, to enhance productivity and improving quality of the produce.","PeriodicalId":43089,"journal":{"name":"Acta Technologica Agriculturae","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Technologica Agriculturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ata-2023-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In order to meet the growing agricultural demands, modern machinery needs to be deployed and cheaper energy supply needs to be ensured. With advancements in artificial intelligence, fruit harvesting robots can improve both the quality and productivity of fruit picking and increase orange fruit exports. However, to ensure effective working of the fruit harvesting robot, an energy source that is both efficient and cost-effective is necessary. This paper aims at designing of a solar energy system for a lightweight fruit harvesting robot for orange orchards in Pakistan and conducting a feasibility study for the deployment of the robot for remote agricultural land. The site for fruit harvesting robot employment is decided by irradiance using random forest regression. Solar system sizing is done based on the design and energy requirements of the fruit harvesting robot. The Homer Pro software is used for simulation of the system to analyse the potential of using solar system for fruit harvesting robot in Sargodha, Pakistan. The results show that compared to hybrid system, a stand-alone system is a more cost effective, reliable, and efficient option with a payback time of 3.36 years and levelized cost of energy being $0.085 per unit kWh. This study proves that solar energy is a viable and cheaper solution for using modern agricultural machineries, like fruit harvesting robot, in remote areas in developing countries, like Pakistan, to enhance productivity and improving quality of the produce.
巴基斯坦水果收获机器人太阳能系统设计与分析
为了满足日益增长的农业需求,需要部署现代机械,并保证更便宜的能源供应。随着人工智能的进步,水果采摘机器人可以提高水果采摘的质量和生产率,并增加橙子的出口。然而,为了保证水果收获机器人的有效工作,一种既高效又经济的能源是必要的。本文旨在为巴基斯坦橘园轻型水果收获机器人设计太阳能系统,并对该机器人在偏远农业用地的部署进行可行性研究。利用随机森林回归,确定了水果收获机器人的工作地点。太阳能系统的尺寸是根据水果收获机器人的设计和能量需求来确定的。在巴基斯坦萨戈达,利用Homer Pro软件对该系统进行了仿真,分析了将太阳能系统用于水果收获机器人的潜力。结果表明,与混合系统相比,单机系统更具成本效益、可靠性和效率,投资回收期为3.36年,平均能源成本为0.085美元/千瓦时。这项研究证明,在巴基斯坦等发展中国家的偏远地区,太阳能是一种可行且更便宜的解决方案,可以使用现代农业机械,如水果收获机器人,以提高生产力和提高农产品质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Technologica Agriculturae
Acta Technologica Agriculturae AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
2.50
自引率
28.60%
发文量
32
审稿时长
18 weeks
期刊介绍: Acta Technologica Agriculturae is an international scientific double-blind peer reviewed journal focused on agricultural engineering. The journal is multidisciplinary and publishes original research and review papers in engineering, agricultural and biological sciences, and materials science. Aims and Scope Areas of interest include but are not limited to: agricultural and biosystems engineering; machines and mechanization of agricultural production; information and electrical technologies; agro-product and food processing engineering; physical, chemical and biological changes in the soil caused by tillage and field traffic, soil working machinery and terramechanics; renewable energy sources and bioenergy; rural buildings; related issues from applied physics and chemistry, ecology, economy and energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信