Sharp, strong and unique minimizers for low complexity robust recovery

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Jalal Fadili, Tran T. A. Nghia, Trinh T. T. Tran
{"title":"Sharp, strong and unique minimizers for low complexity robust recovery","authors":"Jalal Fadili, Tran T. A. Nghia, Trinh T. T. Tran","doi":"10.1093/imaiai/iaad005","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we show the important roles of sharp minima and strong minima for robust recovery. We also obtain several characterizations of sharp minima for convex regularized optimization problems. Our characterizations are quantitative and verifiable especially for the case of decomposable norm regularized problems including sparsity, group-sparsity and low-rank convex problems. For group-sparsity optimization problems, we show that a unique solution is a strong solution and obtains quantitative characterizations for solution uniqueness.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"32 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we show the important roles of sharp minima and strong minima for robust recovery. We also obtain several characterizations of sharp minima for convex regularized optimization problems. Our characterizations are quantitative and verifiable especially for the case of decomposable norm regularized problems including sparsity, group-sparsity and low-rank convex problems. For group-sparsity optimization problems, we show that a unique solution is a strong solution and obtains quantitative characterizations for solution uniqueness.
锐利,强大和独特的最小化低复杂性稳健恢复
摘要本文证明了锐极小值和强极小值在鲁棒恢复中的重要作用。对于凸正则化优化问题,我们也得到了尖锐极小值的几个特征。特别是对于可分解范数正则化问题,包括稀疏性、群稀疏性和低秩凸性问题,我们的刻画是定量的和可验证的。对于群稀疏优化问题,我们证明了唯一解是强解,并得到了解唯一性的定量表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信