{"title":"Imaging of conductivity distribution based on a combined reconstruction method in brain electrical impedance tomography","authors":"Yanyan Shi, Yajun Lou, Meng Wang, Shuo Zheng, Zhiwei Tian, Feng Fu","doi":"10.3934/ipi.2022060","DOIUrl":null,"url":null,"abstract":"Electrical impedance tomography (EIT) is a promising technique in medical imaging. With this technique, pathology-related conductivity variation can be visualized. Nevertheless, reconstruction of conductivity distribution is a severely ill-posed inverse problem which poses a great challenge for the EIT technique. Especially in brain EIT, irregular and multi-layered head structure along with low-conductivity skull brings more difficulties for accurate reconstruction. To address such problems, a novel reconstruction method which combines Tikhonov regularization with denoising algorithm is proposed for imaging conductivity distribution in brain EIT. With the proposed method, image reconstruction of intracerebral hemorrhage in different brain lobes of a three-layer head model is conducted. Besides, simultaneous reconstruction of intracerebral hemorrhage and secondary ischemia is performed. Meanwhile, the impact of noise is investigated to evaluate the anti-noise performance. In addition, image reconstructions under head shape deformation are performed. The proposed reconstruction method is also quantitatively estimated by calculating blur radius and structural similarity. Phantom experiments are carried out to further verify the effectiveness of the proposed method. Both qualitative and quantitative results have demonstrated that the proposed combined method is superior to Tikhonov regularization in imaging conductivity distribution. This work would provide an alternative for accurate reconstruction in EIT based medical imaging.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"96 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ipi.2022060","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Electrical impedance tomography (EIT) is a promising technique in medical imaging. With this technique, pathology-related conductivity variation can be visualized. Nevertheless, reconstruction of conductivity distribution is a severely ill-posed inverse problem which poses a great challenge for the EIT technique. Especially in brain EIT, irregular and multi-layered head structure along with low-conductivity skull brings more difficulties for accurate reconstruction. To address such problems, a novel reconstruction method which combines Tikhonov regularization with denoising algorithm is proposed for imaging conductivity distribution in brain EIT. With the proposed method, image reconstruction of intracerebral hemorrhage in different brain lobes of a three-layer head model is conducted. Besides, simultaneous reconstruction of intracerebral hemorrhage and secondary ischemia is performed. Meanwhile, the impact of noise is investigated to evaluate the anti-noise performance. In addition, image reconstructions under head shape deformation are performed. The proposed reconstruction method is also quantitatively estimated by calculating blur radius and structural similarity. Phantom experiments are carried out to further verify the effectiveness of the proposed method. Both qualitative and quantitative results have demonstrated that the proposed combined method is superior to Tikhonov regularization in imaging conductivity distribution. This work would provide an alternative for accurate reconstruction in EIT based medical imaging.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.