An enhanced security framework for IoT environment using Jaya optimisation-based genetic algorithm

Q3 Computer Science
S. Velliangiri, Iwin Thanakumar Joseph, Shanthini Pandiaraj, P. Leela Jancy, Ch. Madhubabu
{"title":"An enhanced security framework for IoT environment using Jaya optimisation-based genetic algorithm","authors":"S. Velliangiri, Iwin Thanakumar Joseph, Shanthini Pandiaraj, P. Leela Jancy, Ch. Madhubabu","doi":"10.1504/ijitst.2023.127388","DOIUrl":null,"url":null,"abstract":"The internet of things (IoT) employs a cloud network, and the data stored in the cloud servers are highly vulnerable to various attacks. As per the current analysis report, around 23% of IoT devices are prone to attack. The data stored in the cloud storage are highly vulnerable to attacks leading to a pullback factor of 15% in economic growth. Considering the above security of the IoT devices, this paper proposes a framework integrating the Jaya algorithm and genetic algorithm to achieve an optimal detection of intrusion in the IoT network. The JA is a parameter less algorithm that does not require any precise control parameters. In contrast, the GA is a meta-heuristic approach that produces reasonable quality solutions for complex functions. The extensive analysis of the proposed algorithm yield better performance in vital parameters like accuracy, recall and F-score.","PeriodicalId":38357,"journal":{"name":"International Journal of Internet Technology and Secured Transactions","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Internet Technology and Secured Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijitst.2023.127388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

The internet of things (IoT) employs a cloud network, and the data stored in the cloud servers are highly vulnerable to various attacks. As per the current analysis report, around 23% of IoT devices are prone to attack. The data stored in the cloud storage are highly vulnerable to attacks leading to a pullback factor of 15% in economic growth. Considering the above security of the IoT devices, this paper proposes a framework integrating the Jaya algorithm and genetic algorithm to achieve an optimal detection of intrusion in the IoT network. The JA is a parameter less algorithm that does not require any precise control parameters. In contrast, the GA is a meta-heuristic approach that produces reasonable quality solutions for complex functions. The extensive analysis of the proposed algorithm yield better performance in vital parameters like accuracy, recall and F-score.
使用基于Jaya优化的遗传算法的物联网环境增强安全框架
物联网采用云网络,存储在云服务器上的数据极易受到各种攻击。根据目前的分析报告,大约23%的物联网设备容易受到攻击。存储在云存储中的数据极易受到攻击,导致经济增长的回调系数为15%。考虑到上述物联网设备的安全性,本文提出了一种结合Jaya算法和遗传算法的框架,以实现物联网网络中入侵的最优检测。JA是一种不需要任何精确控制参数的无参数算法。相比之下,遗传算法是一种元启发式方法,可以为复杂函数产生合理的高质量解决方案。对所提出算法的广泛分析在准确率、召回率和f分等重要参数上产生了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Internet Technology and Secured Transactions
International Journal of Internet Technology and Secured Transactions Computer Science-Computer Networks and Communications
CiteScore
2.50
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信