Srinivasulu Boyineni, K. Kavitha, Meruva Sreenivasulu
{"title":"Cat swarm optimisation-based mobile sinks scheduling in large-scale wireless sensor networks","authors":"Srinivasulu Boyineni, K. Kavitha, Meruva Sreenivasulu","doi":"10.1504/ijcnds.2023.127475","DOIUrl":null,"url":null,"abstract":"In wireless sensor networks (WSNs), the hotspot problem is one of the major challenging issues because it isolates some network parts and interrupts the data routing. The hotspot problem is mitigated through a mobile sink, where it visits a set of nodes in the network called rendezvous points, whereas the remaining nodes traverse their data to it. In large-scale WSNs, the travelling distance of MS is longer, and it increases the delay of reaching an RP. So, the data overflow may occur due to a limited buffer of sensor nodes. This problem is avoided by increasing the number of mobile sinks in the WSNs. In this context, a cat-swarm optimisation algorithm is used to decide the optimal set of mobile sinks and a simple geometric method to determine the optimal visiting order for each mobile sink. The proposed work is compared with start-of-art literature, and the proposed work outperforms them.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcnds.2023.127475","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In wireless sensor networks (WSNs), the hotspot problem is one of the major challenging issues because it isolates some network parts and interrupts the data routing. The hotspot problem is mitigated through a mobile sink, where it visits a set of nodes in the network called rendezvous points, whereas the remaining nodes traverse their data to it. In large-scale WSNs, the travelling distance of MS is longer, and it increases the delay of reaching an RP. So, the data overflow may occur due to a limited buffer of sensor nodes. This problem is avoided by increasing the number of mobile sinks in the WSNs. In this context, a cat-swarm optimisation algorithm is used to decide the optimal set of mobile sinks and a simple geometric method to determine the optimal visiting order for each mobile sink. The proposed work is compared with start-of-art literature, and the proposed work outperforms them.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.