{"title":"Characterizing exceptional points using neural networks","authors":"Md Afsar Reja, Awadhesh Narayan","doi":"10.1209/0295-5075/ad0c6f","DOIUrl":null,"url":null,"abstract":"Abstract One of the key features of non-Hermitian systems is the occurrence of exceptional points (EPs), spectral degeneracies where the eigenvalues and eigenvectors merge. In this work, we propose applying neural networks to characterize EPs by introducing a new feature -- summed phase rigidity (SPR). We consider different models with varying degrees of complexity to illustrate our approach, and show how to predict EPs for two-site and four-site gain and loss models. Further, we demonstrate an accurate EP prediction in the paradigmatic Hatano-Nelson model for a variable number of sites. Remarkably, we show how SPR enables a prediction of EPs of orders completely unseen by the training data. Our method can be useful to characterize EPs in an automated manner using machine learning approaches.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"8 6","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad0c6f","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract One of the key features of non-Hermitian systems is the occurrence of exceptional points (EPs), spectral degeneracies where the eigenvalues and eigenvectors merge. In this work, we propose applying neural networks to characterize EPs by introducing a new feature -- summed phase rigidity (SPR). We consider different models with varying degrees of complexity to illustrate our approach, and show how to predict EPs for two-site and four-site gain and loss models. Further, we demonstrate an accurate EP prediction in the paradigmatic Hatano-Nelson model for a variable number of sites. Remarkably, we show how SPR enables a prediction of EPs of orders completely unseen by the training data. Our method can be useful to characterize EPs in an automated manner using machine learning approaches.
期刊介绍:
General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology.
Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate).
EPL also publishes Comments on Letters previously published in the Journal.