PoroFluidics: Deterministic fluid control in porous microfluidics

Zhongzheng Wang, Louis Jun Ye Ong, Yixiang Gan, Jean-Michel Pereira, Jun Zhang, Yi-Chin Toh, Emilie Sauret
{"title":"PoroFluidics: Deterministic fluid control in porous microfluidics","authors":"Zhongzheng Wang, Louis Jun Ye Ong, Yixiang Gan, Jean-Michel Pereira, Jun Zhang, Yi-Chin Toh, Emilie Sauret","doi":"10.22541/essoar.170000020.03410573/v1","DOIUrl":null,"url":null,"abstract":"Microfluidic devices with open lattice structures, equivalent to a type of porous media, allow for the manipulation of fluid transport processes while having distinct structural, mechanical, and thermal properties. However, a fundamental understanding of the design principles for the solid structure in order to achieve consistent and desired flow patterns remains a challenge, preventing its further development and wider applications. Here, through quantitative and mechanistic analyses of the behavior of multi-phase phenomena that involve gas-liquid-solid interfaces, we present a design framework for a new class of microfluidic devices containing porous architectures (referred to as poroFluidics) for deterministic control of multi-phase fluid transport processes. We show that the essential properties of the fluids and solid, including viscosity, interfacial tension, wettability, as well as solid manufacture resolution, can be incorporated into the design to achieve consistent flow in porous media, where the desired spatial and temporal fluid invasion sequence can be realized. Experiments and numerical simulations reveal that different preferential flow pathways can be controlled by solid geometry, flow conditions, or fluid/solid properties. Our design framework enables precise, multifunctional, and dynamic control of multi-phase transport within engineered porous media, unlocking new avenues for developing cost-effective, programmable microfluidic devices for manipulating multi-phase flows.","PeriodicalId":487619,"journal":{"name":"Authorea (Authorea)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Authorea (Authorea)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22541/essoar.170000020.03410573/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microfluidic devices with open lattice structures, equivalent to a type of porous media, allow for the manipulation of fluid transport processes while having distinct structural, mechanical, and thermal properties. However, a fundamental understanding of the design principles for the solid structure in order to achieve consistent and desired flow patterns remains a challenge, preventing its further development and wider applications. Here, through quantitative and mechanistic analyses of the behavior of multi-phase phenomena that involve gas-liquid-solid interfaces, we present a design framework for a new class of microfluidic devices containing porous architectures (referred to as poroFluidics) for deterministic control of multi-phase fluid transport processes. We show that the essential properties of the fluids and solid, including viscosity, interfacial tension, wettability, as well as solid manufacture resolution, can be incorporated into the design to achieve consistent flow in porous media, where the desired spatial and temporal fluid invasion sequence can be realized. Experiments and numerical simulations reveal that different preferential flow pathways can be controlled by solid geometry, flow conditions, or fluid/solid properties. Our design framework enables precise, multifunctional, and dynamic control of multi-phase transport within engineered porous media, unlocking new avenues for developing cost-effective, programmable microfluidic devices for manipulating multi-phase flows.
多孔流体:多孔微流体的确定性流体控制
具有开放晶格结构的微流体装置,相当于一种多孔介质,允许操纵流体传输过程,同时具有独特的结构,机械和热性能。然而,为了实现一致和理想的流动模式,对固体结构设计原则的基本理解仍然是一个挑战,阻碍了它的进一步发展和更广泛的应用。在这里,通过对涉及气液固界面的多相现象行为的定量和机制分析,我们提出了一种新型微流体装置的设计框架,该装置包含多孔结构(称为多孔流体),用于多相流体输送过程的确定性控制。我们表明,流体和固体的基本特性,包括粘度、界面张力、润湿性以及固体制造分辨率,可以纳入设计中,以实现多孔介质中的一致流动,从而实现所需的空间和时间流体侵入顺序。实验和数值模拟表明,不同的优先流动路径可以由固体几何形状、流动条件或流体/固体性质控制。我们的设计框架能够精确、多功能和动态地控制工程多孔介质中的多相传输,为开发具有成本效益的、可编程的微流体设备来操纵多相流开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信