Conditional intermediate entropy and Birkhoff average properties of hyperbolic flows

Pub Date : 2023-11-14 DOI:10.1017/etds.2023.110
XIAOBO HOU, XUETING TIAN
{"title":"Conditional intermediate entropy and Birkhoff average properties of hyperbolic flows","authors":"XIAOBO HOU, XUETING TIAN","doi":"10.1017/etds.2023.110","DOIUrl":null,"url":null,"abstract":"Abstract Katok [Lyapunov exponents, entropy and periodic points of diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 51 (1980), 137–173] conjectured that every $C^{2}$ diffeomorphism f on a Riemannian manifold has the intermediate entropy property, that is, for any constant $c \\in [0, h_{\\mathrm {top}}(f))$ , there exists an ergodic measure $\\mu $ of f satisfying $h_{\\mu }(f)=c$ . In this paper, we obtain a conditional intermediate metric entropy property and two conditional intermediate Birkhoff average properties for basic sets of flows that characterize the refined roles of ergodic measures in the invariant ones. In this process, we establish a ‘multi-horseshoe’ entropy-dense property and use it to get the goal combined with conditional variational principles. We also obtain the same result for singular hyperbolic attractors.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Katok [Lyapunov exponents, entropy and periodic points of diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 51 (1980), 137–173] conjectured that every $C^{2}$ diffeomorphism f on a Riemannian manifold has the intermediate entropy property, that is, for any constant $c \in [0, h_{\mathrm {top}}(f))$ , there exists an ergodic measure $\mu $ of f satisfying $h_{\mu }(f)=c$ . In this paper, we obtain a conditional intermediate metric entropy property and two conditional intermediate Birkhoff average properties for basic sets of flows that characterize the refined roles of ergodic measures in the invariant ones. In this process, we establish a ‘multi-horseshoe’ entropy-dense property and use it to get the goal combined with conditional variational principles. We also obtain the same result for singular hyperbolic attractors.
分享
查看原文
双曲流的条件中间熵和Birkhoff平均性质
微分同态的Katok [Lyapunov]指数、熵和周期点。出版。数学。Inst. Hautes Études Sci. 51(1980), 137-173]推测黎曼流形上的每一个$C^{2}$微分同态f具有中间熵性质,即对于任意常数$C \in [0, h_{\ mathm}}(f))$,存在一个满足$h_{\mu}(f)= C $的遍历测度$\mu $。在本文中,我们得到了基本流集的一个条件中间度量熵性质和两个条件中间Birkhoff平均性质,这些性质表征了遍历测度在不变测度中的精细作用。在此过程中,我们建立了一个“多马蹄形”熵密性质,并结合条件变分原理利用它得到目标。对于奇异双曲吸引子,我们也得到了相同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信