Spontaneous emergence of two-dimensional quasibreathers in a nonlinear Schrödinger equation with nonlocal derivatives

Alexander Hrabski, Yulin Pan
{"title":"Spontaneous emergence of two-dimensional quasibreathers in a nonlinear Schrödinger equation with nonlocal derivatives","authors":"Alexander Hrabski, Yulin Pan","doi":"10.1103/physreve.108.054215","DOIUrl":null,"url":null,"abstract":"We consider the nonlinear Schr\\\"odinger equation with nonlocal derivatives in a two-dimensional periodic domain. For certain orders of derivatives, we find a type of quasi-breather solution dominating the field evolution at low nonlinearity levels. With the increase of nonlinearity, the structures break down, giving way to Rayleigh-Jeans (or wave turbulence) spectra. Phase-space trajectories associated with the quasibreather solutions are found to be close to that of the linear system and almost periodic. We employ two methods to search for nearby periodic solutions (e.g., exact breathers), yet none are found. Given these distinguishing behaviors, we interpret this structure in the context of Kolmogorov-Arnold-Moser (KAM) theory.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":"36 49","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.108.054215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the nonlinear Schr\"odinger equation with nonlocal derivatives in a two-dimensional periodic domain. For certain orders of derivatives, we find a type of quasi-breather solution dominating the field evolution at low nonlinearity levels. With the increase of nonlinearity, the structures break down, giving way to Rayleigh-Jeans (or wave turbulence) spectra. Phase-space trajectories associated with the quasibreather solutions are found to be close to that of the linear system and almost periodic. We employ two methods to search for nearby periodic solutions (e.g., exact breathers), yet none are found. Given these distinguishing behaviors, we interpret this structure in the context of Kolmogorov-Arnold-Moser (KAM) theory.
具有非局部导数的非线性Schrödinger方程中二维拟呼吸体的自发出现
研究二维周期域上具有非局部导数的非线性Schr\ odinger方程。对于某些阶导数,我们找到了一类在低非线性水平下主导场演化的拟呼吸解。随着非线性的增加,结构被破坏,让位于瑞利-金斯(或波湍流)光谱。发现与准呼吸解相关的相空间轨迹与线性系统的相空间轨迹接近,并且几乎是周期性的。我们使用了两种方法来搜索附近的周期解(例如,精确呼吸),但没有找到。鉴于这些不同的行为,我们在Kolmogorov-Arnold-Moser (KAM)理论的背景下解释了这种结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信