Enhanced chiral edge currents and orbital magnetic moment in chiral d -wave superconductors from mesoscopic finite-size effects

P. Holmvall, A. M. Black-Schaffer
{"title":"Enhanced chiral edge currents and orbital magnetic moment in chiral d -wave superconductors from mesoscopic finite-size effects","authors":"P. Holmvall, A. M. Black-Schaffer","doi":"10.1103/physrevb.108.174505","DOIUrl":null,"url":null,"abstract":"Chiral superconductors spontaneously break time-reversal symmetry and host topologically protected edge modes, supposedly generating chiral edge currents which are typically taken as a characteristic fingerprint of chiral superconductivity. However, recent studies have shown that the total edge current in two dimensions (2D) often vanishes for all chiral superconductors except for chiral $p$-wave, especially at low temperatures, thus severely impeding potential experimental verification and characterization of these superconductors. In this work, we use the quasiclassical theory of superconductivity to study mesoscopic disk-schaped chiral $d$-wave superconductors. We find that mesoscopic finite-size effects cause a dramatic enhancement of the total charge current and orbital magnetic moment (OMM), even at low temperatures. We study how these quantities scale with temperature, spontaneous Meissner screening, and system radius $\\mathcal{R}\\ensuremath{\\in}[5,200]{\\ensuremath{\\xi}}_{0}$ with superconducting coherence length ${\\ensuremath{\\xi}}_{0}$. We find a general $1/\\mathcal{R}$ scaling in the total charge current and OMM for sufficiently large systems, but this breaks down in small systems, instead producing a local maximum at $\\mathcal{R}\\ensuremath{\\approx}10--20{\\ensuremath{\\xi}}_{0}$ due to mesoscopic finite-size effects. These effects also cause a spontaneous charge-current reversal opposite to the chirality below $\\mathcal{R}<10{\\ensuremath{\\xi}}_{0}$. Our work highlights mesoscopic systems as a route to experimentally verify chiral $d$-wave superconductivity, measurable with magnetometry.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":"36 13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.108.174505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chiral superconductors spontaneously break time-reversal symmetry and host topologically protected edge modes, supposedly generating chiral edge currents which are typically taken as a characteristic fingerprint of chiral superconductivity. However, recent studies have shown that the total edge current in two dimensions (2D) often vanishes for all chiral superconductors except for chiral $p$-wave, especially at low temperatures, thus severely impeding potential experimental verification and characterization of these superconductors. In this work, we use the quasiclassical theory of superconductivity to study mesoscopic disk-schaped chiral $d$-wave superconductors. We find that mesoscopic finite-size effects cause a dramatic enhancement of the total charge current and orbital magnetic moment (OMM), even at low temperatures. We study how these quantities scale with temperature, spontaneous Meissner screening, and system radius $\mathcal{R}\ensuremath{\in}[5,200]{\ensuremath{\xi}}_{0}$ with superconducting coherence length ${\ensuremath{\xi}}_{0}$. We find a general $1/\mathcal{R}$ scaling in the total charge current and OMM for sufficiently large systems, but this breaks down in small systems, instead producing a local maximum at $\mathcal{R}\ensuremath{\approx}10--20{\ensuremath{\xi}}_{0}$ due to mesoscopic finite-size effects. These effects also cause a spontaneous charge-current reversal opposite to the chirality below $\mathcal{R}<10{\ensuremath{\xi}}_{0}$. Our work highlights mesoscopic systems as a route to experimentally verify chiral $d$-wave superconductivity, measurable with magnetometry.
介观有限尺寸效应下手性d波超导体中增强的手性边缘电流和轨道磁矩
手性超导体自发地打破时间反转对称性,并拥有拓扑保护的边缘模式,产生手性边缘电流,这通常被视为手性超导的特征指纹。然而,最近的研究表明,除了手性$p$ -波之外,所有的手性超导体在二维(2D)中的总边缘电流经常消失,特别是在低温下,从而严重阻碍了这些超导体的潜在实验验证和表征。在这项工作中,我们使用超导的准经典理论来研究介观盘形手性$d$波超导体。我们发现,即使在低温下,介观有限尺寸效应也会导致总电荷电流和轨道磁矩(OMM)的显著增强。我们研究了这些量如何随温度、自发迈斯纳筛选和系统半径$\mathcal{R}\ensuremath{\in}[5,200]{\ensuremath{\xi}}_{0}$与超导相干长度${\ensuremath{\xi}}_{0}$的比例。我们发现在足够大的系统中,总电荷电流和OMM普遍$1/\mathcal{R}$缩放,但在小系统中,由于介观有限尺寸效应,这种情况会打破,而是在$\mathcal{R}\ensuremath{\approx}10--20{\ensuremath{\xi}}_{0}$处产生局部最大值。这些效应也会引起自发的电荷-电流反转,与$\mathcal{R}<10{\ensuremath{\xi}}_{0}$下面的手性相反。我们的工作强调介观系统作为实验验证手性$d$ -波超导性的途径,可通过磁强计测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信