Sascha Christian Burmeister, Daniela Guericke, Guido Schryen
{"title":"A memetic NSGA-II for the multi-objective flexible job shop scheduling problem with real-time energy tariffs","authors":"Sascha Christian Burmeister, Daniela Guericke, Guido Schryen","doi":"10.1007/s10696-023-09517-7","DOIUrl":null,"url":null,"abstract":"Abstract Rising costs for energy are increasingly becoming a vital factor for the production planning of manufacturing companies. Manufacturers face the challenge to react to dynamic energy prices and design energy cost efficient schedules in their production planning. In the literature, the energy cost-aware Flexible Job Shop Scheduling Problem addresses minimization of both makespan and energy costs. Recent studies provide multi-objective approaches to model the trade-off of minimizing makespan and energy costs. However, the literature is limited to coarse-grained time periods and does not consider dynamic tariffs where costs change at short intervals, so that production schedules may fall short on energy costs. We aim to close this research gap by considering frequently changing real-time energy tariffs. We propose a multi-objective memetic algorithm based on the non-dominated sorting genetic algorithm (NSGA-II) with both makespan and energy cost minimization as the objectives. We evaluate our approach by conducting computational experiments using prominent FJSP-benchmark instances from the literature, which we supplement with empiric dynamic energy prices. We show results on method performance and compare the memetic NSGA-II with the results of an exact state-of-the-art solver. To investigate the trade-off between a short makespan and low energy costs, we present solutions on the approximated Pareto front and discuss our results.","PeriodicalId":50441,"journal":{"name":"Flexible Services and Manufacturing Journal","volume":"7 11","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible Services and Manufacturing Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10696-023-09517-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Rising costs for energy are increasingly becoming a vital factor for the production planning of manufacturing companies. Manufacturers face the challenge to react to dynamic energy prices and design energy cost efficient schedules in their production planning. In the literature, the energy cost-aware Flexible Job Shop Scheduling Problem addresses minimization of both makespan and energy costs. Recent studies provide multi-objective approaches to model the trade-off of minimizing makespan and energy costs. However, the literature is limited to coarse-grained time periods and does not consider dynamic tariffs where costs change at short intervals, so that production schedules may fall short on energy costs. We aim to close this research gap by considering frequently changing real-time energy tariffs. We propose a multi-objective memetic algorithm based on the non-dominated sorting genetic algorithm (NSGA-II) with both makespan and energy cost minimization as the objectives. We evaluate our approach by conducting computational experiments using prominent FJSP-benchmark instances from the literature, which we supplement with empiric dynamic energy prices. We show results on method performance and compare the memetic NSGA-II with the results of an exact state-of-the-art solver. To investigate the trade-off between a short makespan and low energy costs, we present solutions on the approximated Pareto front and discuss our results.
期刊介绍:
The mission of the Flexible Services and Manufacturing Journal, formerly known as the International Journal of Flexible Manufacturing Systems, is to publish original, high-quality research papers in the field of services and manufacturing management. All aspects in this field including the interface between engineering and management, the design and analysis of service and manufacturing systems as well as operational planning and decision support are covered. The journal seeks papers that have a clear focus on the applicability in the real business world including all kinds of services and manufacturing industries, e.g. in logistics, transportation, health care, manufacturing-based services, production planning and control, and supply chain management. Flexibility should be understood in its widest sense as a system’s ability to respond to changes in the environment through improved decision making and business development procedures and enabling IT solutions.