Utilizing an Attention-Based LSTM Model for Detecting Sarcasm and Irony in Social Media

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Deborah Olaniyan, Roseline Oluwaseun Ogundokun, Olorunfemi Paul Bernard, Julius Olaniyan, Rytis Maskeliūnas, Hakeem Babalola Akande
{"title":"Utilizing an Attention-Based LSTM Model for Detecting Sarcasm and Irony in Social Media","authors":"Deborah Olaniyan, Roseline Oluwaseun Ogundokun, Olorunfemi Paul Bernard, Julius Olaniyan, Rytis Maskeliūnas, Hakeem Babalola Akande","doi":"10.3390/computers12110231","DOIUrl":null,"url":null,"abstract":"Sarcasm and irony represent intricate linguistic forms in social media communication, demanding nuanced comprehension of context and tone. In this study, we propose an advanced natural language processing methodology utilizing long short-term memory with an attention mechanism (LSTM-AM) to achieve an impressive accuracy of 99.86% in detecting and interpreting sarcasm and irony within social media text. Our approach involves innovating novel deep learning models adept at capturing subtle cues, contextual dependencies, and sentiment shifts inherent in sarcastic or ironic statements. Furthermore, we explore the potential of transfer learning from extensive language models and integrating multimodal information, such as emojis and images, to heighten the precision of sarcasm and irony detection. Rigorous evaluation against benchmark datasets and real-world social media content showcases the efficacy of our proposed models. The outcomes of this research hold paramount significance, offering a substantial advancement in comprehending intricate language nuances in digital communication. These findings carry profound implications for sentiment analysis, opinion mining, and an enhanced understanding of social media dynamics.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"5 8","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12110231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Sarcasm and irony represent intricate linguistic forms in social media communication, demanding nuanced comprehension of context and tone. In this study, we propose an advanced natural language processing methodology utilizing long short-term memory with an attention mechanism (LSTM-AM) to achieve an impressive accuracy of 99.86% in detecting and interpreting sarcasm and irony within social media text. Our approach involves innovating novel deep learning models adept at capturing subtle cues, contextual dependencies, and sentiment shifts inherent in sarcastic or ironic statements. Furthermore, we explore the potential of transfer learning from extensive language models and integrating multimodal information, such as emojis and images, to heighten the precision of sarcasm and irony detection. Rigorous evaluation against benchmark datasets and real-world social media content showcases the efficacy of our proposed models. The outcomes of this research hold paramount significance, offering a substantial advancement in comprehending intricate language nuances in digital communication. These findings carry profound implications for sentiment analysis, opinion mining, and an enhanced understanding of social media dynamics.
利用基于注意力的LSTM模型检测社交媒体中的讽刺和反语
讽刺和反讽是社交媒体交流中复杂的语言形式,需要对语境和语气有细致的理解。在这项研究中,我们提出了一种先进的自然语言处理方法,利用长短期记忆和注意机制(LSTM-AM)来检测和解释社交媒体文本中的讽刺和反语,达到了99.86%的令人印象深刻的准确率。我们的方法包括创新新颖的深度学习模型,这些模型善于捕捉微妙的线索、上下文依赖关系以及讽刺或讽刺语句中固有的情绪变化。此外,我们探索了从广泛的语言模型中迁移学习和整合多模态信息(如表情符号和图像)的潜力,以提高讽刺和反语检测的精度。对基准数据集和现实世界社交媒体内容的严格评估显示了我们提出的模型的有效性。这项研究的结果具有重要的意义,为理解数字通信中复杂的语言细微差别提供了实质性的进步。这些发现对情感分析、意见挖掘和增强对社交媒体动态的理解具有深远的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers
Computers COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.40
自引率
3.60%
发文量
153
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信