Qingchao Liu , Ruohan Yu , Yingfeng Cai , Long Chen
{"title":"Studying the predictability of crash risk caused by manual takeover of autonomous vehicles in mixed traffic flow","authors":"Qingchao Liu , Ruohan Yu , Yingfeng Cai , Long Chen","doi":"10.1080/19427867.2023.2279807","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores how to reduce the cost of prediction as much as possible while ensuring the prediction accuracy of a real-time crash risk model. The extreme gradient enhancement (XGBoost) algorithm was used to predict the crash risk of autonomous vehicles in different sections of highway. The results show that the prediction performance of the model is the best when the threshold value is 0.05. Choosing two variables to predict can ensure high accuracy and simultaneously reduce the cost of prediction when the accuracy of crash risk prediction of the three sections can reach 73%, 62%, and 70%. However, when only one variable can be selected due to sensor or system failure, the speed difference between the takeover car and the front car can be chosen to achieve the greatest benefit. These findings could provide a reference for technicians to design safer and more economical autonomous vehicles.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"16 10","pages":"Pages 1205-1223"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786723002515","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores how to reduce the cost of prediction as much as possible while ensuring the prediction accuracy of a real-time crash risk model. The extreme gradient enhancement (XGBoost) algorithm was used to predict the crash risk of autonomous vehicles in different sections of highway. The results show that the prediction performance of the model is the best when the threshold value is 0.05. Choosing two variables to predict can ensure high accuracy and simultaneously reduce the cost of prediction when the accuracy of crash risk prediction of the three sections can reach 73%, 62%, and 70%. However, when only one variable can be selected due to sensor or system failure, the speed difference between the takeover car and the front car can be chosen to achieve the greatest benefit. These findings could provide a reference for technicians to design safer and more economical autonomous vehicles.
期刊介绍:
Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research.
The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.