{"title":"Role of self-curing mechanism in lightweight concrete: A state-of-the-art report","authors":"Ganesan Sundaramoorthy, Palaniappan Meyyappan","doi":"10.1556/1848.2023.00695","DOIUrl":null,"url":null,"abstract":"Abstract Worldwide, precast and hybrid construction methods are becoming increasingly popular in the construction industry. But many problems occur during the fabrication, such as segregation, bleeding, scaling, plastic shrinkage, dust formation, honeycombing, sintering, high sorptivity, and high permeability and transportation. This problem may be caused by an ineffective curing process that affects the quality of concrete and construction. In addition, it provides inadequate and incomplete cement hydration that has a 20% negative effect on the desired properties of the concrete. Various researchers have demonstrated the components of self-curing lightweight concrete that can enhance strength and physicochemical properties, and address the above-mentioned issues. In this review, the role of the self-curing mechanism in lightweight concrete based on the various self-curing chemical admixtures such as polyethylene glycol (PEG), superabsorbent polymer (SAP), polyvinyl alcohol (PVA), sodium lignosulfonate and calcium lignosulfonate as self-curing agents are discussed in detail. Also, this paper briefly reports on the scope, significance, mechanisms, and tests for self-curing lightweight concrete. Overall, this review analyzes the possibilities of future research perspectives on self-curing lightweight concrete with sustainable materials and fibres with comparative technical information.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":"34 31","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2023.00695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Worldwide, precast and hybrid construction methods are becoming increasingly popular in the construction industry. But many problems occur during the fabrication, such as segregation, bleeding, scaling, plastic shrinkage, dust formation, honeycombing, sintering, high sorptivity, and high permeability and transportation. This problem may be caused by an ineffective curing process that affects the quality of concrete and construction. In addition, it provides inadequate and incomplete cement hydration that has a 20% negative effect on the desired properties of the concrete. Various researchers have demonstrated the components of self-curing lightweight concrete that can enhance strength and physicochemical properties, and address the above-mentioned issues. In this review, the role of the self-curing mechanism in lightweight concrete based on the various self-curing chemical admixtures such as polyethylene glycol (PEG), superabsorbent polymer (SAP), polyvinyl alcohol (PVA), sodium lignosulfonate and calcium lignosulfonate as self-curing agents are discussed in detail. Also, this paper briefly reports on the scope, significance, mechanisms, and tests for self-curing lightweight concrete. Overall, this review analyzes the possibilities of future research perspectives on self-curing lightweight concrete with sustainable materials and fibres with comparative technical information.
期刊介绍:
International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.