Tangle Equations, the Jones conjecture, slopes of surfaces in tangle complements, and q-deformed rationals

IF 0.6 3区 数学 Q3 MATHEMATICS
Adam S. Sikora
{"title":"Tangle Equations, the Jones conjecture, slopes of surfaces in tangle complements, and <i>q</i>-deformed rationals","authors":"Adam S. Sikora","doi":"10.4153/s0008414x23000755","DOIUrl":null,"url":null,"abstract":"We study systems of $2$-tangle equations which play an important role in the analysis of enzyme actions on DNA strands. We show that every system of framed tangle equations has at most one framed rational solution. Furthermore, we show that the Jones Unknot conjecture implies that if a system of tangle equations has a rational solution then that solution is unique among all $2$-tangles. This result potentially opens a door to a purely topological disproof of the Jones Unknot conjecture. We introduce the notion of the Kauffman bracket ratio $\\{T\\}_q\\in \\mathbb Q(q)$ of any $2$-tangle $T$ and we conjecture that for $q=1$ it is the slope of meridionally incompressible surfaces in $D^3-T$. We prove that conjecture for algebraic $T$. We also prove that for rational $T$, the brackets $\\{T\\}_q$ coincide with the $q$-rationals of Morier-Genoud-Ovsienko. Additionally, we relate systems of tangle equations to the Cosmetic Surgery Conjecture and the Nugatory Crossing Conjecture.","PeriodicalId":55284,"journal":{"name":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000755","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study systems of $2$-tangle equations which play an important role in the analysis of enzyme actions on DNA strands. We show that every system of framed tangle equations has at most one framed rational solution. Furthermore, we show that the Jones Unknot conjecture implies that if a system of tangle equations has a rational solution then that solution is unique among all $2$-tangles. This result potentially opens a door to a purely topological disproof of the Jones Unknot conjecture. We introduce the notion of the Kauffman bracket ratio $\{T\}_q\in \mathbb Q(q)$ of any $2$-tangle $T$ and we conjecture that for $q=1$ it is the slope of meridionally incompressible surfaces in $D^3-T$. We prove that conjecture for algebraic $T$. We also prove that for rational $T$, the brackets $\{T\}_q$ coincide with the $q$-rationals of Morier-Genoud-Ovsienko. Additionally, we relate systems of tangle equations to the Cosmetic Surgery Conjecture and the Nugatory Crossing Conjecture.
缠结方程,琼斯猜想,缠结补中曲面的斜率,和q变形的有理数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
58
审稿时长
4.5 months
期刊介绍: The Canadian Journal of Mathematics (CJM) publishes original, high-quality research papers in all branches of mathematics. The Journal is a flagship publication of the Canadian Mathematical Society and has been published continuously since 1949. New research papers are published continuously online and collated into print issues six times each year. To be submitted to the Journal, papers should be at least 18 pages long and may be written in English or in French. Shorter papers should be submitted to the Canadian Mathematical Bulletin. Le Journal canadien de mathématiques (JCM) publie des articles de recherche innovants de grande qualité dans toutes les branches des mathématiques. Publication phare de la Société mathématique du Canada, il est publié en continu depuis 1949. En ligne, la revue propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés six fois par année. Les textes présentés au JCM doivent compter au moins 18 pages et être rédigés en anglais ou en français. C’est le Bulletin canadien de mathématiques qui reçoit les articles plus courts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信