Phase volumes of ultra high performance concrete containing nanoscale pozzolan

IF 1.4 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
A. Korpa, N. Dhamo, A. Andoni, C. Pritzel
{"title":"Phase volumes of ultra high performance concrete containing nanoscale pozzolan","authors":"A. Korpa, N. Dhamo, A. Andoni, C. Pritzel","doi":"10.1680/jadcr.21.00069","DOIUrl":null,"url":null,"abstract":"Grid nanoindentation and quantitative X-ray diffraction are employed to provide quantitative information on phase constituents of nanoscale pozzolan-containing ultra-high-performance concrete (UHPC). Three UHPC samples containing nanoscale pozzolan and cured with and without microwave energy are investigated. The volume fraction of each phase constituent is independently evaluated using both techniques: nanoindentation (NI) and quantitative X-ray diffraction (QXRD). For the NI, the volumes have been evaluated by taking into account the thresholds characterising the phase constituents. The NI could assess phase mixtures or composites rather than single phases. The microwave-cured samples (CMW and CPMW) contain in total more hydration products that the sample that was not cured with microwave energy (C000). In all three samples, a nanocomposite (C–S–H/CHnm) consisting of high-density (HD) calcium silicate hydrate (C–S–H) and nanoscale portlandite (CH) is included, and its amount is more than double for the pressure-compacted and microwave-cured sample (CPMW). The heat curing by microwave energy together with the very low amount of water and restriction of the available space for hydration products, favour the formation of the nanocomposite (C–S–H/CHnm) in the CPMW sample.","PeriodicalId":7299,"journal":{"name":"Advances in Cement Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Cement Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jadcr.21.00069","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Grid nanoindentation and quantitative X-ray diffraction are employed to provide quantitative information on phase constituents of nanoscale pozzolan-containing ultra-high-performance concrete (UHPC). Three UHPC samples containing nanoscale pozzolan and cured with and without microwave energy are investigated. The volume fraction of each phase constituent is independently evaluated using both techniques: nanoindentation (NI) and quantitative X-ray diffraction (QXRD). For the NI, the volumes have been evaluated by taking into account the thresholds characterising the phase constituents. The NI could assess phase mixtures or composites rather than single phases. The microwave-cured samples (CMW and CPMW) contain in total more hydration products that the sample that was not cured with microwave energy (C000). In all three samples, a nanocomposite (C–S–H/CHnm) consisting of high-density (HD) calcium silicate hydrate (C–S–H) and nanoscale portlandite (CH) is included, and its amount is more than double for the pressure-compacted and microwave-cured sample (CPMW). The heat curing by microwave energy together with the very low amount of water and restriction of the available space for hydration products, favour the formation of the nanocomposite (C–S–H/CHnm) in the CPMW sample.
含纳米级火山灰的超高性能混凝土的相体积
采用网格纳米压痕和定量x射线衍射技术对纳米级含火山灰超高性能混凝土(UHPC)的物相组成进行了定量分析。研究了三种含纳米级火山灰的UHPC样品,分别用微波和不用微波固化。使用纳米压痕(NI)和定量x射线衍射(QXRD)两种技术独立评估每种相成分的体积分数。对于NI,通过考虑表征相成分的阈值来评估体积。NI可以评估相混合物或复合材料而不是单相。微波固化样品(CMW和CPMW)的水化产物总量高于未用微波能固化的样品(C000)。在这三种样品中,包含了一种由高密度水合硅酸钙(C-S-H)和纳米级硅酸盐(CH)组成的纳米复合材料(C-S-H /CHnm),其含量是压力压实和微波固化样品(CPMW)的两倍以上。微波能的热固化、极少量的水和水化产物可用空间的限制,有利于CPMW样品中纳米复合材料(C-S-H /CHnm)的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Cement Research
Advances in Cement Research 工程技术-材料科学:综合
CiteScore
3.70
自引率
5.00%
发文量
56
审稿时长
3.2 months
期刊介绍: Advances in Cement Research highlights the scientific ideas and innovations within the cutting-edge cement manufacture industry. It is a global journal with a scope encompassing cement manufacture and materials, properties and durability of cementitious materials and systems, hydration, interaction of cement with other materials, analysis and testing, special cements and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信