Augustus E. Ibhaze, Adekunle O. Gbadebo, Akinwumi A. Amusan, Samuel N. John
{"title":"Performance Analysis of Fiber Attenuation in Passive Optical Networks","authors":"Augustus E. Ibhaze, Adekunle O. Gbadebo, Akinwumi A. Amusan, Samuel N. John","doi":"10.52549/ijeei.v11i3.4919","DOIUrl":null,"url":null,"abstract":"The introduction of Fiber Optics cables in broadband Internet distribution has been a game changer in bulk capacity delivery, speed, reliability and penetration. However, the uncurbed incessant existence of cuts and failures have threatened the growth of Internet connectivity as a whole. In this work, the impact of fiber cuts is investigated using a hybrid approach, encompassing both real-world data from a live GPON network and simulations using OptiSystem 12 for FTTH GPON scenarios. Fiber cuts and failures are emulated by introducing varying attenuation levels in the simulated network's feeder cable section within OptiSystem 12, while in the live GPON network, the attenuation is induced by introducing wrap bends in the last-mile patch cord. The findings reveal a consistent pattern in both simulated and live data for both downstream and upstream traffic scenarios. As attenuation levels increased, there was a corresponding decline in Q-factor, Eye Height, and optical power, coupled with a concurrent rise in the minimum BER. Thus, in the most severe scenario, fiber cuts can result in service degradation and eventual service outage. To mitigate this issue, the implementation of a typeB PON protection system with a wireless auto-failover technique is proposed. Adoption and deployment of the proposed technique and deliberate maintenance measures alongside thorough supervision are suggested to be possible solutions to fiber cuts in metropolitan parlance.","PeriodicalId":37618,"journal":{"name":"Indonesian Journal of Electrical Engineering and Informatics","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52549/ijeei.v11i3.4919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of Fiber Optics cables in broadband Internet distribution has been a game changer in bulk capacity delivery, speed, reliability and penetration. However, the uncurbed incessant existence of cuts and failures have threatened the growth of Internet connectivity as a whole. In this work, the impact of fiber cuts is investigated using a hybrid approach, encompassing both real-world data from a live GPON network and simulations using OptiSystem 12 for FTTH GPON scenarios. Fiber cuts and failures are emulated by introducing varying attenuation levels in the simulated network's feeder cable section within OptiSystem 12, while in the live GPON network, the attenuation is induced by introducing wrap bends in the last-mile patch cord. The findings reveal a consistent pattern in both simulated and live data for both downstream and upstream traffic scenarios. As attenuation levels increased, there was a corresponding decline in Q-factor, Eye Height, and optical power, coupled with a concurrent rise in the minimum BER. Thus, in the most severe scenario, fiber cuts can result in service degradation and eventual service outage. To mitigate this issue, the implementation of a typeB PON protection system with a wireless auto-failover technique is proposed. Adoption and deployment of the proposed technique and deliberate maintenance measures alongside thorough supervision are suggested to be possible solutions to fiber cuts in metropolitan parlance.
期刊介绍:
The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation. Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction. Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging. Control: Optimal, Robust and Adaptive Controls, Non Linear and Stochastic Controls, Modeling and Identification, Robotics, Image Based Control, Hybrid and Switching Control, Process Optimization and Scheduling, Control and Intelligent Systems. Computer and Informatics: Computer Architecture, Parallel and Distributed Computer, Pervasive Computing, Computer Network, Embedded System, Human—Computer Interaction, Virtual/Augmented Reality, Computer Security, Software Engineering (Software: Lifecycle, Management, Engineering Process, Engineering Tools and Methods), Programming (Programming Methodology and Paradigm), Data Engineering (Data and Knowledge level Modeling, Information Management (DB) practices, Knowledge Based Management System, Knowledge Discovery in Data).