Mehdi Hosseinzadeh, Saber Ghasemi Karaj-Abad, Mehdi Rasizadeh, Mojtaba Abbasian
{"title":"Exfoliated Poly (styrene-co-urethane) Grafted - Polymethylmethacrylate /Layered Double Hydroxide Nanocomposite Synthesized by Metal Catalyzed Living Radical Polymerization and Solvent Blending Method","authors":"Mehdi Hosseinzadeh, Saber Ghasemi Karaj-Abad, Mehdi Rasizadeh, Mojtaba Abbasian","doi":"10.24200/sci.2023.59942.6507","DOIUrl":null,"url":null,"abstract":"In this research, a facile strategy was employed for the synthesis of terpolymer derivatives from polystyrene (PSt), polyurethane (PU), poly (methyl methacrylate) (PMMA), and its organo-modified Zn Al LDH (layered double hydroxide) by in situ ATRP. For this purpose, firstly, LDH nanoparticles were modified with sodium dodecyl sulfonate (SDS) by the anion exchange reaction of Zn-Al-LDH. Secondly, PU macroinitiator was obtained from a solvent composed of 9-decen-1-ol and used in controlled graft copolymerization of styrene to afford PU-co-Pst copolymer. Then, the synthesized PU-co-St was brominated by N-bromosuccinimide (NBS) to obtain a copolymer with the bromine group. In the following, living radical polymerization of MMA was done in the presence of brominated PU-co-St and CuBr /Bpy (2, 2’-bipyridine catalyst to prepare the (PMMA-g-PSt-g-PU) terpolymer. Finally, (PMMA-g-PSt-g-PU)/ ZnAl LDH nanocomposite was successfully synthesized by the solution intercalation method. FE-SEM images showed that surface morphologies of Zn-Al (SDS) and Zn-Al-LDH leads to sheet-like and hexagonal morphology. Investigation of thermal properties using DSC and TGA exhibited that the prepared (PMMA-g-PSt-g-PU) /Zn-Al-LDH nanocomposite has a higher thermal stability compared to neat PU. The synthesized terpolymer and (PMMA-g-PSt-g-PU)/ Zn-Al-LDH nanocomposite can be used as a reinforcing agent for polymeric nanocomposites due to its high LDH properties.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"31 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Iranica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/sci.2023.59942.6507","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, a facile strategy was employed for the synthesis of terpolymer derivatives from polystyrene (PSt), polyurethane (PU), poly (methyl methacrylate) (PMMA), and its organo-modified Zn Al LDH (layered double hydroxide) by in situ ATRP. For this purpose, firstly, LDH nanoparticles were modified with sodium dodecyl sulfonate (SDS) by the anion exchange reaction of Zn-Al-LDH. Secondly, PU macroinitiator was obtained from a solvent composed of 9-decen-1-ol and used in controlled graft copolymerization of styrene to afford PU-co-Pst copolymer. Then, the synthesized PU-co-St was brominated by N-bromosuccinimide (NBS) to obtain a copolymer with the bromine group. In the following, living radical polymerization of MMA was done in the presence of brominated PU-co-St and CuBr /Bpy (2, 2’-bipyridine catalyst to prepare the (PMMA-g-PSt-g-PU) terpolymer. Finally, (PMMA-g-PSt-g-PU)/ ZnAl LDH nanocomposite was successfully synthesized by the solution intercalation method. FE-SEM images showed that surface morphologies of Zn-Al (SDS) and Zn-Al-LDH leads to sheet-like and hexagonal morphology. Investigation of thermal properties using DSC and TGA exhibited that the prepared (PMMA-g-PSt-g-PU) /Zn-Al-LDH nanocomposite has a higher thermal stability compared to neat PU. The synthesized terpolymer and (PMMA-g-PSt-g-PU)/ Zn-Al-LDH nanocomposite can be used as a reinforcing agent for polymeric nanocomposites due to its high LDH properties.
期刊介绍:
The objectives of Scientia Iranica are two-fold. The first is to provide a forum for the presentation of original works by scientists and engineers from around the world. The second is to open an effective channel to enhance the level of communication between scientists and engineers and the exchange of state-of-the-art research and ideas.
The scope of the journal is broad and multidisciplinary in technical sciences and engineering. It encompasses theoretical and experimental research. Specific areas include but not limited to chemistry, chemical engineering, civil engineering, control and computer engineering, electrical engineering, material, manufacturing and industrial management, mathematics, mechanical engineering, nuclear engineering, petroleum engineering, physics, nanotechnology.