{"title":"Prediction of scour depth around bridge abutments with different shapes using machine learning models","authors":"Yangyu Deng, Yakun Liu, Di Zhang, Ze Cao","doi":"10.1680/jwama.22.00087","DOIUrl":null,"url":null,"abstract":"Accurate assessment of scour depth around bridge abutments is crucial to reasonable design of abutment structures. In this study, machine learning (ML) models are implemented, including M5′ model tree (M5′MT), multivariate adaptive regression spline (MARS), locally weighted polynomial regression (LWPR) and multigene genetic programming (MGGP) to predict scour depth around vertical-wall, 45° wing-wall and semicircular bridge abutments. Published experimental data are adopted, with four input parameters considered for the prediction of relative scour depth. The optimal input combination for each model is first determined using correlation and sensitivity analyses; results reveal that MGGP exhibits the best agreement with experimental data for vertical-wall and semicircular abutments, whereas LWPR outperforms the other models for the 45° wing-wall abutment. In addition, compared with the empirical equations and ML models employed in the literature, the accuracy of scour depth prediction is significantly improved with the ML models used in this study. Considering the comprehensive performance for all types of abutments in terms of accuracy, reliability and interpretability, MGGP is recommended as the representative of the implemented ML models with its mean absolute percentage error of 2.40% for a vertical-wall abutment, 3.95% for a 45° wing-wall abutment and 3.85% for a semicircular abutment.","PeriodicalId":54569,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Water Management","volume":"20 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Water Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jwama.22.00087","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate assessment of scour depth around bridge abutments is crucial to reasonable design of abutment structures. In this study, machine learning (ML) models are implemented, including M5′ model tree (M5′MT), multivariate adaptive regression spline (MARS), locally weighted polynomial regression (LWPR) and multigene genetic programming (MGGP) to predict scour depth around vertical-wall, 45° wing-wall and semicircular bridge abutments. Published experimental data are adopted, with four input parameters considered for the prediction of relative scour depth. The optimal input combination for each model is first determined using correlation and sensitivity analyses; results reveal that MGGP exhibits the best agreement with experimental data for vertical-wall and semicircular abutments, whereas LWPR outperforms the other models for the 45° wing-wall abutment. In addition, compared with the empirical equations and ML models employed in the literature, the accuracy of scour depth prediction is significantly improved with the ML models used in this study. Considering the comprehensive performance for all types of abutments in terms of accuracy, reliability and interpretability, MGGP is recommended as the representative of the implemented ML models with its mean absolute percentage error of 2.40% for a vertical-wall abutment, 3.95% for a 45° wing-wall abutment and 3.85% for a semicircular abutment.
期刊介绍:
Water Management publishes papers on all aspects of water treatment, water supply, river, wetland and catchment management, inland waterways and urban regeneration.
Topics covered: applied fluid dynamics and water (including supply, treatment and sewerage) and river engineering; together with the increasingly important fields of wetland and catchment management, groundwater and contaminated land, waterfront development and urban regeneration. The scope also covers hydroinformatics tools, risk and uncertainty methods, as well as environmental, social and economic issues relating to sustainable development.