None Agus Perdana Windarto, None Anjar Wanto, None S Solikhun, None Ronal Watrianthos
{"title":"A Comprehensive Bibliometric Analysis of Deep Learning Techniques for Breast Cancer Segmentation: Trends and Topic Exploration (2019-2023)","authors":"None Agus Perdana Windarto, None Anjar Wanto, None S Solikhun, None Ronal Watrianthos","doi":"10.29207/resti.v7i5.5274","DOIUrl":null,"url":null,"abstract":"The objective of this study is to perform a comprehensive bibliometric analysis of the existing literature on breast cancer segmentation using deep learning techniques. Data for this analysis were obtained from the Web of Science Core Collection (WOS-CC) that spans from 2019 to 2023. The study is based on a comprehensive collection of 985 documents that cover a substantial body of research findings related to the application of deep learning techniques in segmenting breast cancer images. The analysis reveals an annual increase in the number of published works at a rate of 16.69%, indicating a consistent and robust increase in research efforts during the specified time frame. Examining the occurrence of keywords from 2019 to 2023, it is evident that the term \"convolutional neural network\" exhibited a notable frequency, reaching its peak in 2021. However, the term \"machine learning\" demonstrated the highest overall frequency, peaking around 2021 as well. This emphasizes the importance of machine learning in the advancement of image segmentation algorithms and convolutional neural networks, which have shown exceptional effectiveness in image analysis tasks. Furthermore, the utilization of latent Dirichlet Allocation (LDA) to identify topics resulted in a relatively uniform distribution, with each topic having an equivalent number of abstracts. This indicates that the data set encompasses a diverse range of topics within the field of deep learning as it relates to breast cancer image segmentation. However, it should be noted that topic 4 has the highest level of significance, suggesting that the application of deep learning for diagnosis was extensively explored in this study.","PeriodicalId":435683,"journal":{"name":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29207/resti.v7i5.5274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study is to perform a comprehensive bibliometric analysis of the existing literature on breast cancer segmentation using deep learning techniques. Data for this analysis were obtained from the Web of Science Core Collection (WOS-CC) that spans from 2019 to 2023. The study is based on a comprehensive collection of 985 documents that cover a substantial body of research findings related to the application of deep learning techniques in segmenting breast cancer images. The analysis reveals an annual increase in the number of published works at a rate of 16.69%, indicating a consistent and robust increase in research efforts during the specified time frame. Examining the occurrence of keywords from 2019 to 2023, it is evident that the term "convolutional neural network" exhibited a notable frequency, reaching its peak in 2021. However, the term "machine learning" demonstrated the highest overall frequency, peaking around 2021 as well. This emphasizes the importance of machine learning in the advancement of image segmentation algorithms and convolutional neural networks, which have shown exceptional effectiveness in image analysis tasks. Furthermore, the utilization of latent Dirichlet Allocation (LDA) to identify topics resulted in a relatively uniform distribution, with each topic having an equivalent number of abstracts. This indicates that the data set encompasses a diverse range of topics within the field of deep learning as it relates to breast cancer image segmentation. However, it should be noted that topic 4 has the highest level of significance, suggesting that the application of deep learning for diagnosis was extensively explored in this study.