Analysis of Precipitation Phase of Alloy1.4957 Heat-Resistant Steel for Gasoline Turbocharger

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jong-Kwan Lee, Byeong-Joo Lee, Eon-Sik Lee
{"title":"Analysis of Precipitation Phase of Alloy1.4957 Heat-Resistant Steel for Gasoline Turbocharger","authors":"Jong-Kwan Lee, Byeong-Joo Lee, Eon-Sik Lee","doi":"10.3365/kjmm.2023.61.10.721","DOIUrl":null,"url":null,"abstract":"Recently, strengthened environmental regulations have required the downsizing of gasoline engines, and as a result, demand for gasoline turbochargers has rapidly increased. The vane of a turbocharger controls the flow of gases toward the turbine, and it is manufactured by powder metallurgy due to its complex shape. Gasoline engines have a high exhaust gas temperature (~1000oC), and thus, Alloy1.4957 (GX15CrNiCo21-20-20) containing large amounts of Cr, Ni, and Co is used. In this study, Alloy1.4957 powders were sintered by hot isostatic pressing (HIP), and then homogenized and thermally exposed to exhaust gas temperatures. Then, a microstructural analysis was conducted to observe the changes that occurred for each process. M6X carbonitride containing Si, called Cr3Ni2SiX, was observed to be the main precipitate phase in this alloy. In general, it is known that Cr3Ni2SiX is only rarely observed in heat-resistant steel. However, in Alloy1.4957, a large amount of Cr3Ni2SiX was precipitated or dissolved depending on the process, and this is probably due to the high Si and N content of Alloy1.4957. In addition to Cr3Ni2SiX, Cr23C6 and NbX were observed. Cr23C6 was dissolved during the homogenization process, but NbX, which has high thermal stability, retained a fine size during the homogenization process and provided a nucleation site for Cr3Ni2SiX during thermal exposure.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":"65 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3365/kjmm.2023.61.10.721","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, strengthened environmental regulations have required the downsizing of gasoline engines, and as a result, demand for gasoline turbochargers has rapidly increased. The vane of a turbocharger controls the flow of gases toward the turbine, and it is manufactured by powder metallurgy due to its complex shape. Gasoline engines have a high exhaust gas temperature (~1000oC), and thus, Alloy1.4957 (GX15CrNiCo21-20-20) containing large amounts of Cr, Ni, and Co is used. In this study, Alloy1.4957 powders were sintered by hot isostatic pressing (HIP), and then homogenized and thermally exposed to exhaust gas temperatures. Then, a microstructural analysis was conducted to observe the changes that occurred for each process. M6X carbonitride containing Si, called Cr3Ni2SiX, was observed to be the main precipitate phase in this alloy. In general, it is known that Cr3Ni2SiX is only rarely observed in heat-resistant steel. However, in Alloy1.4957, a large amount of Cr3Ni2SiX was precipitated or dissolved depending on the process, and this is probably due to the high Si and N content of Alloy1.4957. In addition to Cr3Ni2SiX, Cr23C6 and NbX were observed. Cr23C6 was dissolved during the homogenization process, but NbX, which has high thermal stability, retained a fine size during the homogenization process and provided a nucleation site for Cr3Ni2SiX during thermal exposure.
汽油增压器用合金1.4957耐热钢析出相分析
最近,随着环境规制的加强,要求汽油发动机小型化,因此对汽油涡轮增压器的需求迅速增加。涡轮增压器的叶片控制气体流向涡轮,由于其形状复杂,采用粉末冶金技术制造。汽油机废气温度高(~1000℃),因此使用含有大量Cr、Ni、Co的1.4957合金(GX15CrNiCo21-20-20)。在本研究中,采用热等静压(HIP)烧结合金1.4957粉末,然后均匀化并热暴露在废气温度下。然后,进行微观结构分析,观察每个过程中发生的变化。含Si的M6X碳氮化物称为Cr3Ni2SiX,是该合金的主要析出相。一般来说,我们知道在耐热钢中很少观察到Cr3Ni2SiX。而在Alloy1.4957中,根据工艺的不同,析出或溶解了大量的Cr3Ni2SiX,这可能是由于Alloy1.4957的Si和N含量较高所致。除Cr3Ni2SiX外,还观察到Cr23C6和NbX。Cr23C6在均质化过程中溶解,而NbX具有较高的热稳定性,在均质化过程中保持了较细的尺寸,并在热暴露过程中为Cr3Ni2SiX提供了成核位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Korean Journal of Metals and Materials
Korean Journal of Metals and Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
1.80
自引率
58.30%
发文量
100
审稿时长
4-8 weeks
期刊介绍: The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信