{"title":"A SHANSEP approach to quantifying the behaviour of clayey soils on a constant shear drained stress path","authors":"David Reid, Riccardo Fanni, Andy Fourie","doi":"10.1139/cgj-2022-0473","DOIUrl":null,"url":null,"abstract":"Assessing the risk of slope failures of earth structures comprising loose, saturated soils has seen increased focus recently owing to a series of prominent tailings and water dam failures. The potential for the triggering of slope instability by a rising phreatic surface – commonly referred to as the constant shear drained (CSD) stress path – has been well documented over the past few decades for sands and sandy soils under a wide range of loading modes. Alternatively, there has been limited CSD element testing of more clayey soils, with the available data rather showing a dilative tendency through the CSD stress path and mobilised strengths greater than the critical friction ratio, even for specimens commencing CSD shearing from an initially loose state. The current paper expands on the CSD data of clayey soils by testing an iron ore tailings (IOT) and kaolin clay in both triaxial and direct simple shear (DSS) devices, with an emphasis on the DSS. Owing to the tendency for the CSD stress path to result in an overconsolidated condition (i.e. unloading) the tests in the current study were interpreted in the SHANSEP framework given its frequent use to analyse clay behaviour. The results indicated that the SHANSEP framework can reasonably characterise some aspects of CSD behaviour of clays in DSS loading, with some caveats.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"62 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cgj-2022-0473","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Assessing the risk of slope failures of earth structures comprising loose, saturated soils has seen increased focus recently owing to a series of prominent tailings and water dam failures. The potential for the triggering of slope instability by a rising phreatic surface – commonly referred to as the constant shear drained (CSD) stress path – has been well documented over the past few decades for sands and sandy soils under a wide range of loading modes. Alternatively, there has been limited CSD element testing of more clayey soils, with the available data rather showing a dilative tendency through the CSD stress path and mobilised strengths greater than the critical friction ratio, even for specimens commencing CSD shearing from an initially loose state. The current paper expands on the CSD data of clayey soils by testing an iron ore tailings (IOT) and kaolin clay in both triaxial and direct simple shear (DSS) devices, with an emphasis on the DSS. Owing to the tendency for the CSD stress path to result in an overconsolidated condition (i.e. unloading) the tests in the current study were interpreted in the SHANSEP framework given its frequent use to analyse clay behaviour. The results indicated that the SHANSEP framework can reasonably characterise some aspects of CSD behaviour of clays in DSS loading, with some caveats.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.