Manar Joundy Hazar, Salah Zrigui, Mohsen Maraoui, Mounir Zrigui, Henri Nicolas
{"title":"A Recommendation System Involving a Hybrid Approach of Student Review and Rating for an Educational Video","authors":"Manar Joundy Hazar, Salah Zrigui, Mohsen Maraoui, Mounir Zrigui, Henri Nicolas","doi":"10.5753/jbcs.2023.3063","DOIUrl":null,"url":null,"abstract":"Video recommendation systems in e-learning platforms are a specific type of recommendation system that uses algorithms to suggest educational videos to students based on their interests and preferences. Student’s written feedback or reviews can provide more details about the educational video, including its strengths and weaknesses. In this paper, we build an education video recommender system based on learners’ reviews. we use LDA topic model on textual data extracted from educational videos to train language models as an input to supervised CNN model. Additionally, we used latent factor model to extract the educational videos' features and learner preferences from learners’ historical data (ratings and reviews) as an output CNN model. In our proposed technique, we use hybrid user ratings and reviews to tackle sparsity and cold start problem in the recommender system. Our recommender uses user review to suggest new recommended videos, but in case there is no review (empty cell in matrix factorization) or unclear comment then we will take user rating on that educational video. We worked on real-world big and diverse learning courses and video content datasets from Coursera. Results show that new prediction ratings from learners' reviews can be used to make good new recommendations about videos that have not been previously seen and reduce cold start and sparsity problem effects.","PeriodicalId":39760,"journal":{"name":"Journal of the Brazilian Computer Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Brazilian Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/jbcs.2023.3063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Video recommendation systems in e-learning platforms are a specific type of recommendation system that uses algorithms to suggest educational videos to students based on their interests and preferences. Student’s written feedback or reviews can provide more details about the educational video, including its strengths and weaknesses. In this paper, we build an education video recommender system based on learners’ reviews. we use LDA topic model on textual data extracted from educational videos to train language models as an input to supervised CNN model. Additionally, we used latent factor model to extract the educational videos' features and learner preferences from learners’ historical data (ratings and reviews) as an output CNN model. In our proposed technique, we use hybrid user ratings and reviews to tackle sparsity and cold start problem in the recommender system. Our recommender uses user review to suggest new recommended videos, but in case there is no review (empty cell in matrix factorization) or unclear comment then we will take user rating on that educational video. We worked on real-world big and diverse learning courses and video content datasets from Coursera. Results show that new prediction ratings from learners' reviews can be used to make good new recommendations about videos that have not been previously seen and reduce cold start and sparsity problem effects.
期刊介绍:
JBCS is a formal quarterly publication of the Brazilian Computer Society. It is a peer-reviewed international journal which aims to serve as a forum to disseminate innovative research in all fields of computer science and related subjects. Theoretical, practical and experimental papers reporting original research contributions are welcome, as well as high quality survey papers. The journal is open to contributions in all computer science topics, computer systems development or in formal and theoretical aspects of computing, as the list of topics below is not exhaustive. Contributions will be considered for publication in JBCS if they have not been published previously and are not under consideration for publication elsewhere.