Euclidean Domain in the Ring Q[\(\sqrt{-43}\)]

Precious C. Ashara, Martin C. Obi
{"title":"Euclidean Domain in the Ring Q[\\(\\sqrt{-43}\\)]","authors":"Precious C. Ashara, Martin C. Obi","doi":"10.56557/ajomcor/2023/v30i48408","DOIUrl":null,"url":null,"abstract":"An entire ring R with unity is said to be Euclidean Domain (ED) if on R, we defined a function N: R \\(\\to\\) \\(\\mathbb{Z}\\)+ which admits proper generalization of the Euclidean division of integers. Every Euclidean domain (ED) is a Principal ideal domain (PID), but not all principal ideals are Euclidean. We provide detailed proof that the quadratic algebraic integer ring Q[\\(\\sqrt{-43}\\)] is not Euclidean domain. We proved that the ring of algebraic integer in the quadratic complex field Q[\\(\\sqrt{-43}\\)] is a principal ideal domain using the developed inequalities and field norm axioms in [1]. We proved that the ring Q[\\(\\sqrt{-43}\\)] fails to have universal side divisors, thus, fails to be Euclidean domain (ED). This article extended the result application of [1] proving that ring R of algebraic integer in complex quadratic fields Q[\\(\\sqrt{-M}\\)] for M = 43 is non-Euclidean PID in an understandable manner. We hope to look into the formation of these rings, thus, non-Euclidean geometries where the practical application will be more useful. E.g., Elliptic curves on finite fields.","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2023/v30i48408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An entire ring R with unity is said to be Euclidean Domain (ED) if on R, we defined a function N: R \(\to\) \(\mathbb{Z}\)+ which admits proper generalization of the Euclidean division of integers. Every Euclidean domain (ED) is a Principal ideal domain (PID), but not all principal ideals are Euclidean. We provide detailed proof that the quadratic algebraic integer ring Q[\(\sqrt{-43}\)] is not Euclidean domain. We proved that the ring of algebraic integer in the quadratic complex field Q[\(\sqrt{-43}\)] is a principal ideal domain using the developed inequalities and field norm axioms in [1]. We proved that the ring Q[\(\sqrt{-43}\)] fails to have universal side divisors, thus, fails to be Euclidean domain (ED). This article extended the result application of [1] proving that ring R of algebraic integer in complex quadratic fields Q[\(\sqrt{-M}\)] for M = 43 is non-Euclidean PID in an understandable manner. We hope to look into the formation of these rings, thus, non-Euclidean geometries where the practical application will be more useful. E.g., Elliptic curves on finite fields.
环Q中的欧几里得定义域[\(\sqrt{-43}\)]
如果在R上,我们定义了一个函数N: R \(\to\)\(\mathbb{Z}\) +,它允许整数的欧几里得除法的适当推广,那么一个具有单位的环R就是欧几里得定义域(ED)。每一个欧几里得域(ED)都是一个主理想域(PID),但不是所有的主理想都是欧几里得的。给出了二次代数整数环Q[\(\sqrt{-43}\)]不是欧几里得定义域的详细证明。利用文献[1]中的不等式和域范数公理证明了二次复域Q[\(\sqrt{-43}\)]中的代数整数环是一个主理想定义域。证明了环Q[\(\sqrt{-43}\)]不具有泛边因子,因此不属于欧几里德定义域(ED)。本文推广了[1]证明复二次域Q[\(\sqrt{-M}\)]中M = 43的代数整数环R为非欧几里德PID的结果应用。我们希望研究这些环的形成,因此,在非欧几里德几何的实际应用中会更有用。例如,有限域上的椭圆曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信