New classes of parabolic pseudo-differential equations, Feller semigroups, contraction semigroups and stochastic process on the p-adic numbers

IF 0.9 3区 数学 Q2 MATHEMATICS
Anselmo Torresblanca-Badillo, Alfredo R. R. Narváez, José López-González
{"title":"New classes of parabolic pseudo-differential equations, Feller semigroups, contraction semigroups and stochastic process on the p-adic numbers","authors":"Anselmo Torresblanca-Badillo, Alfredo R. R. Narváez, José López-González","doi":"10.1007/s11868-023-00556-0","DOIUrl":null,"url":null,"abstract":"Abstract Two types of p -adic pseudo-differential operators (denoted, respectively, by $${\\mathcal {T}}_{{\\varvec{f}}_{1},{\\varvec{f}}_{2}}^{l}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mi>l</mml:mi> </mml:msubsup> </mml:math> and $${\\mathcal {J}}_{{\\varvec{f}}_{1},{\\varvec{f}}_{2}}^{\\alpha }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>J</mml:mi> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mi>α</mml:mi> </mml:msubsup> </mml:math> ) are introduced in this article. We will show that the operator $${\\mathcal {T}}_{{\\varvec{f}}_{1},{\\varvec{f}}_{2}}^{l}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mi>l</mml:mi> </mml:msubsup> </mml:math> determines certain Feller semigroups and stochastic processes with state space the p -adic numbers. The second type of these operators (defined on a new class of p -adic Sobolev space) are connected with contraction semigroups and parabolic pseudo-differential equations.","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11868-023-00556-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Two types of p -adic pseudo-differential operators (denoted, respectively, by $${\mathcal {T}}_{{\varvec{f}}_{1},{\varvec{f}}_{2}}^{l}$$ T f 1 , f 2 l and $${\mathcal {J}}_{{\varvec{f}}_{1},{\varvec{f}}_{2}}^{\alpha }$$ J f 1 , f 2 α ) are introduced in this article. We will show that the operator $${\mathcal {T}}_{{\varvec{f}}_{1},{\varvec{f}}_{2}}^{l}$$ T f 1 , f 2 l determines certain Feller semigroups and stochastic processes with state space the p -adic numbers. The second type of these operators (defined on a new class of p -adic Sobolev space) are connected with contraction semigroups and parabolic pseudo-differential equations.

Abstract Image

一类新的抛物型伪微分方程,Feller半群,收缩半群和p进数上的随机过程
摘要本文介绍了两类p进伪微分算子(分别用$${\mathcal {T}}_{{\varvec{f}}_{1},{\varvec{f}}_{2}}^{l}$$ tf1, f1和$${\mathcal {J}}_{{\varvec{f}}_{1},{\varvec{f}}_{2}}^{\alpha }$$ jf1, f2 α表示)。我们将证明算子$${\mathcal {T}}_{{\varvec{f}}_{1},{\varvec{f}}_{2}}^{l}$$ t1, f1决定了一些状态空间为p进数的Feller半群和随机过程。第二类算子(定义在一类新的p -adic Sobolev空间上)与收缩半群和抛物型伪微分方程相连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
59
期刊介绍: The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信