Anselmo Torresblanca-Badillo, Alfredo R. R. Narváez, José López-González
{"title":"New classes of parabolic pseudo-differential equations, Feller semigroups, contraction semigroups and stochastic process on the p-adic numbers","authors":"Anselmo Torresblanca-Badillo, Alfredo R. R. Narváez, José López-González","doi":"10.1007/s11868-023-00556-0","DOIUrl":null,"url":null,"abstract":"Abstract Two types of p -adic pseudo-differential operators (denoted, respectively, by $${\\mathcal {T}}_{{\\varvec{f}}_{1},{\\varvec{f}}_{2}}^{l}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mi>l</mml:mi> </mml:msubsup> </mml:math> and $${\\mathcal {J}}_{{\\varvec{f}}_{1},{\\varvec{f}}_{2}}^{\\alpha }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>J</mml:mi> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mi>α</mml:mi> </mml:msubsup> </mml:math> ) are introduced in this article. We will show that the operator $${\\mathcal {T}}_{{\\varvec{f}}_{1},{\\varvec{f}}_{2}}^{l}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mi>l</mml:mi> </mml:msubsup> </mml:math> determines certain Feller semigroups and stochastic processes with state space the p -adic numbers. The second type of these operators (defined on a new class of p -adic Sobolev space) are connected with contraction semigroups and parabolic pseudo-differential equations.","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11868-023-00556-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Two types of p -adic pseudo-differential operators (denoted, respectively, by $${\mathcal {T}}_{{\varvec{f}}_{1},{\varvec{f}}_{2}}^{l}$$ Tf1,f2l and $${\mathcal {J}}_{{\varvec{f}}_{1},{\varvec{f}}_{2}}^{\alpha }$$ Jf1,f2α ) are introduced in this article. We will show that the operator $${\mathcal {T}}_{{\varvec{f}}_{1},{\varvec{f}}_{2}}^{l}$$ Tf1,f2l determines certain Feller semigroups and stochastic processes with state space the p -adic numbers. The second type of these operators (defined on a new class of p -adic Sobolev space) are connected with contraction semigroups and parabolic pseudo-differential equations.
期刊介绍:
The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.