{"title":"Coupling wind LiDAR fixed and volumetric scans for enhanced characterization of wind turbulence and flow three‐dimensionality","authors":"Matteo Puccioni, Coleman Moss, Giacomo Valerio Iungo","doi":"10.1002/we.2865","DOIUrl":null,"url":null,"abstract":"Summary Over the last decades, pulsed light detection and ranging (LiDAR) anemometry has gained growing attention in probing the marine atmospheric boundary layer (MABL) due to its ease of use combined with compelling spatio‐temporal resolution. Among several scanning strategies, fixed scans represent the most prominent choice when high‐frequency resolution is required; however, no information is provided about the spatial heterogeneity of the wind field. On the other hand, volumetric scans allow for the characterization of the spatial variability of the wind field with much lower temporal resolution than fixed scans. In this work, the recently developed “LiDAR Statistical Barnes Objective Analysis” (LiSBOA) algorithm for the optimal design of LiDAR scans and retrieval of wind velocity statistics is tailored for applications in the MABL. The LiDAR data, collected during a recent experimental campaign over Lake Lavon in Texas, show a good consistency of mean velocity profiles between fixed and LiSBOA‐interpolated volumetric data, thus further encouraging the use of coupled fixed and volumetric scans for simultaneous characterizations of wind turbulence statistics along the vertical direction and volumetric heterogeneity of the wind field.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/we.2865","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Summary Over the last decades, pulsed light detection and ranging (LiDAR) anemometry has gained growing attention in probing the marine atmospheric boundary layer (MABL) due to its ease of use combined with compelling spatio‐temporal resolution. Among several scanning strategies, fixed scans represent the most prominent choice when high‐frequency resolution is required; however, no information is provided about the spatial heterogeneity of the wind field. On the other hand, volumetric scans allow for the characterization of the spatial variability of the wind field with much lower temporal resolution than fixed scans. In this work, the recently developed “LiDAR Statistical Barnes Objective Analysis” (LiSBOA) algorithm for the optimal design of LiDAR scans and retrieval of wind velocity statistics is tailored for applications in the MABL. The LiDAR data, collected during a recent experimental campaign over Lake Lavon in Texas, show a good consistency of mean velocity profiles between fixed and LiSBOA‐interpolated volumetric data, thus further encouraging the use of coupled fixed and volumetric scans for simultaneous characterizations of wind turbulence statistics along the vertical direction and volumetric heterogeneity of the wind field.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.