Josep M. Miret, Daniel Sadornil, Juan Tena, Javier Valera
{"title":"A note on factorisation patterns of division polynomials of elliptic curves over finite fields","authors":"Josep M. Miret, Daniel Sadornil, Juan Tena, Javier Valera","doi":"10.3792/pjaa.99.011","DOIUrl":null,"url":null,"abstract":"Let $E$ be an elliptic curve defined over a finite field $\\mathbf{F}_{q}$, $q = p^{d}$, $p > 3$, and a prime number $\\ell > 3$ such that $q \\equiv 1 \\pmod{\\ell}$ and $\\ell \\mid \\# E(\\mathbf{F}_{q})$. In this paper we study the possible factorisation patterns over $\\mathbf{F}_{q}[x]$ of the $\\ell^{k}$-division polynomials associated to $E$ with $k \\geq 2$, extending the work of Verdure [6] for $k=1$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3792/pjaa.99.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $E$ be an elliptic curve defined over a finite field $\mathbf{F}_{q}$, $q = p^{d}$, $p > 3$, and a prime number $\ell > 3$ such that $q \equiv 1 \pmod{\ell}$ and $\ell \mid \# E(\mathbf{F}_{q})$. In this paper we study the possible factorisation patterns over $\mathbf{F}_{q}[x]$ of the $\ell^{k}$-division polynomials associated to $E$ with $k \geq 2$, extending the work of Verdure [6] for $k=1$.