Fatigue Crack Length Estimation and Prediction using Trans-fitting with Support Vector Regression

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Myeongbaek Youn, Yunhan Kim, Dongki Lee, Minki Cho, Byeng D. Youn
{"title":"Fatigue Crack Length Estimation and Prediction using Trans-fitting with Support Vector Regression","authors":"Myeongbaek Youn, Yunhan Kim, Dongki Lee, Minki Cho, Byeng D. Youn","doi":"10.36001/ijphm.2020.v11i1.2606","DOIUrl":null,"url":null,"abstract":"A method is described in this paper for crack propagation prediction using only the initial crack length of the target specimen. The proposed method consists of two parts, (1) crack length estimation using support vector regression (SVR) and (2) crack length prediction using a new trans-fitting method. Features based on the filtered wave signals were defined and a model was constructed using the SVR method to estimate the crack length. The hyper-parameters of the SVR model were selected based on a grid search algorithm. Prediction of the crack length was based on the previous crack length, which was estimated based on the wave signals. In this step, a newly proposed trans-fitting method was applied. The proposed trans-fitting method updated the selected candidate function to translocate the trend of crack propagation based on the training dataset. By translocating the trends to the estimated crack length of the target specimen, the crack propagation could be predicted. The proposed method was validated by comparison with given specimens. The results show that the proposed method can estimate and predict the crack length accurately.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2020.v11i1.2606","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A method is described in this paper for crack propagation prediction using only the initial crack length of the target specimen. The proposed method consists of two parts, (1) crack length estimation using support vector regression (SVR) and (2) crack length prediction using a new trans-fitting method. Features based on the filtered wave signals were defined and a model was constructed using the SVR method to estimate the crack length. The hyper-parameters of the SVR model were selected based on a grid search algorithm. Prediction of the crack length was based on the previous crack length, which was estimated based on the wave signals. In this step, a newly proposed trans-fitting method was applied. The proposed trans-fitting method updated the selected candidate function to translocate the trend of crack propagation based on the training dataset. By translocating the trends to the estimated crack length of the target specimen, the crack propagation could be predicted. The proposed method was validated by comparison with given specimens. The results show that the proposed method can estimate and predict the crack length accurately.
基于支持向量回归变换拟合的疲劳裂纹长度估计与预测
本文描述了一种仅利用目标试样的初始裂纹长度来预测裂纹扩展的方法。该方法由两部分组成,(1)基于支持向量回归(SVR)的裂缝长度估计和(2)基于变换拟合的裂缝长度预测。在滤波后的波信号基础上定义特征,利用支持向量回归方法构造模型估计裂缝长度。基于网格搜索算法选择支持向量回归模型的超参数。裂缝长度的预测是基于先前的裂缝长度,而先前的裂缝长度是基于波浪信号估计的。在这一步中,采用了一种新提出的变换拟合方法。本文提出的变换拟合方法对所选候选函数进行更新,以迁移基于训练数据集的裂纹扩展趋势。通过将趋势转移到目标试样的估计裂纹长度,可以预测裂纹的扩展。通过与给定试样的对比,验证了该方法的有效性。结果表明,该方法能较准确地估计和预测裂纹长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信