Quantum mechanics of bipartite ribbon graphs: Integrality, Lattices and Kronecker coefficients

Q3 Mathematics
Joseph Ben Geloun, Sanjaye Ramgoolam
{"title":"Quantum mechanics of bipartite ribbon graphs: Integrality, Lattices and Kronecker coefficients","authors":"Joseph Ben Geloun, Sanjaye Ramgoolam","doi":"10.5802/alco.254","DOIUrl":null,"url":null,"abstract":"We define solvable quantum mechanical systems on a Hilbert space spanned by bipartite ribbon graphs with a fixed number of edges. The Hilbert space is also an associative algebra, where the product is derived from permutation group products. The existence and structure of this Hilbert space algebra has a number of consequences. The algebra product, which can be expressed in terms of integer ribbon graph reconnection coefficients, is used to define solvable Hamiltonians with eigenvalues expressed in terms of normalized characters of symmetric group elements and degeneracies given in terms of Kronecker coefficients, which are tensor product multiplicities of symmetric group representations. The square of the Kronecker coefficient for a triple of Young diagrams is shown to be equal to the dimension of a sub-lattice in the lattice of ribbon graphs. This leads to an answer to the long-standing question of a combinatorial interpretation of the Kronecker coefficients. As avenues for future research, we discuss applications of the ribbon graph quantum mechanics in algorithms for quantum computation. We also describe a quantum membrane interpretation of these quantum mechanical systems.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 13

Abstract

We define solvable quantum mechanical systems on a Hilbert space spanned by bipartite ribbon graphs with a fixed number of edges. The Hilbert space is also an associative algebra, where the product is derived from permutation group products. The existence and structure of this Hilbert space algebra has a number of consequences. The algebra product, which can be expressed in terms of integer ribbon graph reconnection coefficients, is used to define solvable Hamiltonians with eigenvalues expressed in terms of normalized characters of symmetric group elements and degeneracies given in terms of Kronecker coefficients, which are tensor product multiplicities of symmetric group representations. The square of the Kronecker coefficient for a triple of Young diagrams is shown to be equal to the dimension of a sub-lattice in the lattice of ribbon graphs. This leads to an answer to the long-standing question of a combinatorial interpretation of the Kronecker coefficients. As avenues for future research, we discuss applications of the ribbon graph quantum mechanics in algorithms for quantum computation. We also describe a quantum membrane interpretation of these quantum mechanical systems.
二部带状图的量子力学:完整性、格和克罗内克系数
在由二部带图所张成的具有固定边数的希尔伯特空间上定义了可解的量子力学系统。希尔伯特空间也是一个结合代数,其乘积是由置换群乘积导出的。希尔伯特空间代数的存在性和结构有许多结果。用整数带状图重连系数表示的代数积定义了可解哈密顿量,其特征值用对称群元素的归一化特征表示,简并度用Kronecker系数表示,后者是对称群表示的张量积多重。证明了杨氏图的三组的克罗内克系数的平方等于带状图晶格中的子晶格的维数。这就得到了克罗内克系数组合解释这个长期存在的问题的答案。作为未来研究的途径,我们讨论了带状图量子力学在量子计算算法中的应用。我们还描述了这些量子力学系统的量子膜解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信