Specht's ratio and logarithmic mean in time scale dynamic inequalities and their retrospective variants

IF 0.3 Q4 MATHEMATICS
Deeba Afzal, Muhammad Jibril Sahir
{"title":"Specht's ratio and logarithmic mean in time scale dynamic inequalities and their retrospective variants","authors":"Deeba Afzal, Muhammad Jibril Sahir","doi":"10.12697/acutm.2023.27.01","DOIUrl":null,"url":null,"abstract":"In this research article, we investigate reverse Radon's inequality, reverse Bergström's inequality, the reverse weighted power mean inequality, reverse Schlömilch's inequality, reverse Bernoulli's inequality and reverse Lyapunov's inequality with Specht's ratio on time scales. We also present reverse Rogers--Holder's inequality with logarithmic mean and Specht's ratio on time scales. The time scale dynamic inequalities unify and extend some continuous inequalities and their corresponding discrete and quantum versions.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"1 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2023.27.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this research article, we investigate reverse Radon's inequality, reverse Bergström's inequality, the reverse weighted power mean inequality, reverse Schlömilch's inequality, reverse Bernoulli's inequality and reverse Lyapunov's inequality with Specht's ratio on time scales. We also present reverse Rogers--Holder's inequality with logarithmic mean and Specht's ratio on time scales. The time scale dynamic inequalities unify and extend some continuous inequalities and their corresponding discrete and quantum versions.
时间尺度动态不等式中的Specht比值和对数均值及其回溯变量
在本文中,我们研究了时间尺度上的反Radon不等式、反Bergström不等式、反加权幂平均不等式、反Schlömilch不等式、反Bernoulli不等式和反Lyapunov不等式与Specht比值。我们还提出了时间尺度上具有对数均值和Specht比值的反向Rogers—Holder不等式。时间尺度动态不等式统一和推广了一些连续不等式及其相应的离散和量子形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信