Divisibility conditions on the order of the reductions of algebraic numbers

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Pietro Sgobba
{"title":"Divisibility conditions on the order of the reductions of algebraic numbers","authors":"Pietro Sgobba","doi":"10.1090/mcom/3848","DOIUrl":null,"url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a number field, and let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finitely generated subgroup of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Superscript times\"> <mml:semantics> <mml:msup> <mml:mi>K</mml:mi> <mml:mo>×<!-- × --></mml:mo> </mml:msup> <mml:annotation encoding=\"application/x-tex\">K^\\times</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Without relying on the Generalized Riemann Hypothesis we prove an asymptotic formula for the number of primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German p\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">p</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the order of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper G mod German p right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo lspace=\"thickmathspace\" rspace=\"thickmathspace\">mod</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">p</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(G\\bmod \\mathfrak p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is divisible by a fixed integer. We also provide a rational expression for the natural density of this set. Furthermore, we study the primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German p\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">p</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which the order is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free, and those for which the order has a prescribed <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\"> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic valuation for finitely many primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\"> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. An additional condition on the Frobenius conjugacy class of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German p\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">p</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be considered. In order to establish these results, we prove an unconditional version of the Chebotarev density theorem for Kummer extensions of number fields.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"235 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3848","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let K K be a number field, and let G G be a finitely generated subgroup of K × K^\times . Without relying on the Generalized Riemann Hypothesis we prove an asymptotic formula for the number of primes p \mathfrak p of K K such that the order of ( G mod p ) (G\bmod \mathfrak p) is divisible by a fixed integer. We also provide a rational expression for the natural density of this set. Furthermore, we study the primes p \mathfrak p for which the order is k k -free, and those for which the order has a prescribed \ell -adic valuation for finitely many primes \ell . An additional condition on the Frobenius conjugacy class of p \mathfrak p may be considered. In order to establish these results, we prove an unconditional version of the Chebotarev density theorem for Kummer extensions of number fields.
代数数约化阶上的可整除性条件
设K K是一个数字域,G G是K × K^\次的有限生成子群。在不依赖广义黎曼假设的情况下,我们证明了K K的素数p \mathfrak p的渐近公式,使得(G mod p) (G\bmod \mathfrak p)的阶可被一个固定整数整除。我们也给出了这个集合的自然密度的一个有理表达式。进一步,我们研究了阶数为k自由的素数p \mathfrak p,以及阶数对有限多个素数具有规定的r \ell -adic值的素数p \mathfrak p。可以考虑p \mathfrak p的Frobenius共轭类的一个附加条件。为了证明这些结果,我们证明了数域Kummer扩展的Chebotarev密度定理的一个无条件版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信