Regularization of backward parabolic equations in Banach spaces by generalized Sobolev equations

IF 0.9 4区 数学 Q2 MATHEMATICS
Nguyen Van Duc, Dinh Nho Hào, Maxim Shishlenin
{"title":"Regularization of backward parabolic equations in Banach spaces by generalized Sobolev equations","authors":"Nguyen Van Duc, Dinh Nho Hào, Maxim Shishlenin","doi":"10.1515/jiip-2023-0046","DOIUrl":null,"url":null,"abstract":"Abstract Let X be a Banach space with norm <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>∥</m:mo> <m:mo>⋅</m:mo> <m:mo>∥</m:mo> </m:mrow> </m:math> {\\|\\cdot\\|} . Let <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>A</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mi>D</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>⊂</m:mo> <m:mi>X</m:mi> <m:mo>→</m:mo> <m:mi>X</m:mi> </m:mrow> </m:mrow> </m:math> {A:D(A)\\subset X\\rightarrow X} be an (possibly unbounded) operator that generates a uniformly bounded holomorphic semigroup. Suppose that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ε</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> {\\varepsilon>0} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>T</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> {T>0} are two given constants. The backward parabolic equation of finding a function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>u</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mi>X</m:mi> </m:mrow> </m:mrow> </m:math> {u:[0,T]\\rightarrow X} satisfying <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mi>t</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo>⁢</m:mo> <m:mi>u</m:mi> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>t</m:mi> <m:mo><</m:mo> <m:mi>T</m:mi> </m:mrow> </m:mrow> <m:mo rspace=\"5.3pt\">,</m:mo> <m:mrow> <m:mrow> <m:mo>∥</m:mo> <m:mrow> <m:mrow> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>-</m:mo> <m:mi>φ</m:mi> </m:mrow> <m:mo>∥</m:mo> </m:mrow> <m:mo>⩽</m:mo> <m:mi>ε</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> u_{t}+Au=0,\\quad 0<t<T,\\;\\|u(T)-\\varphi\\|\\leqslant\\varepsilon, for φ in X , is regularized by the generalized Sobolev equation <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>⁢</m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>α</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mi>α</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>t</m:mi> <m:mo><</m:mo> <m:mi>T</m:mi> </m:mrow> </m:mrow> <m:mo rspace=\"5.3pt\">,</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mi>α</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mi>φ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> u_{\\alpha t}+A_{\\alpha}u_{\\alpha}=0,\\quad 0<t<T,\\;u_{\\alpha}(T)=\\varphi, where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>α</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> {0<\\alpha<1} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>α</m:mi> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>I</m:mi> <m:mo>+</m:mo> <m:mrow> <m:mi>α</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>A</m:mi> <m:mi>b</m:mi> </m:msup> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:mrow> </m:mrow> </m:math> {A_{\\alpha}=A(I+\\alpha A^{b})^{-1}} with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>b</m:mi> <m:mo>⩾</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> {b\\geqslant 1} . Error estimates of the method with respect to the noise level are proved.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"7 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0046","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let X be a Banach space with norm {\|\cdot\|} . Let A : D ( A ) X X {A:D(A)\subset X\rightarrow X} be an (possibly unbounded) operator that generates a uniformly bounded holomorphic semigroup. Suppose that ε > 0 {\varepsilon>0} and T > 0 {T>0} are two given constants. The backward parabolic equation of finding a function u : [ 0 , T ] X {u:[0,T]\rightarrow X} satisfying u t + A u = 0 , 0 < t < T , u ( T ) - φ ε , u_{t}+Au=0,\quad 0 u α t + A α u α = 0 , 0 < t < T , u α ( T ) = φ , u_{\alpha t}+A_{\alpha}u_{\alpha}=0,\quad 0 0 < α < 1 {0<\alpha<1} and A α = A ( I + α A b ) - 1 {A_{\alpha}=A(I+\alpha A^{b})^{-1}} with b 1 {b\geqslant 1} . Error estimates of the method with respect to the noise level are proved.
用广义Sobolev方程正则化Banach空间中的后抛物型方程
摘要设X是一个范数为∥⋅∥{\|\cdot \|的Banach空间}。设A:D≠(A)∧X→X{ A:D(A) \subset X \rightarrow X}是一个产生一致有界全纯半群的(可能无界的)算子。假设ε &gt;0{\varepsilon &gt;0 }and T &gt;{T&gt;}是两个给定的常数。求函数u:[0,T]→X{ u:[0,T] \rightarrow X}满足u T + a²u = 0,0 &lt;T & T;T,∥u∑(T)- φ∥ε, u_t{+Au= 0,0} &lt;T &lt;T,\;\|u(T)- \quad\varphi \| \leqslant\varepsilon,对于X中的φ,由广义Sobolev方程u α∑T +A α∑u α = 0,0 &lt正则化;T & T;T, u α∑(T)= φ, u_ {\alpha T }+A_{\alpha} u_ {\alpha} = 0,0 \quad&lt;T &lt;T,\;u_{\alpha} (T)= \varphi,其中0&lt;α &lt;10 {&lt;\alpha &lt;1}和A α =A减去(I+ α减去A b) -1{ A_ {\alpha} =A(I+ \alpha A^{b})^{-}}1与b小于1 {b\geqslant 1}。证明了该方法相对于噪声水平的误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inverse and Ill-Posed Problems
Journal of Inverse and Ill-Posed Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published. Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest. The following topics are covered: Inverse problems existence and uniqueness theorems stability estimates optimization and identification problems numerical methods Ill-posed problems regularization theory operator equations integral geometry Applications inverse problems in geophysics, electrodynamics and acoustics inverse problems in ecology inverse and ill-posed problems in medicine mathematical problems of tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信