{"title":"Regularization of backward parabolic equations in Banach spaces by generalized Sobolev equations","authors":"Nguyen Van Duc, Dinh Nho Hào, Maxim Shishlenin","doi":"10.1515/jiip-2023-0046","DOIUrl":null,"url":null,"abstract":"Abstract Let X be a Banach space with norm <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>∥</m:mo> <m:mo>⋅</m:mo> <m:mo>∥</m:mo> </m:mrow> </m:math> {\\|\\cdot\\|} . Let <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>A</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mi>D</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>⊂</m:mo> <m:mi>X</m:mi> <m:mo>→</m:mo> <m:mi>X</m:mi> </m:mrow> </m:mrow> </m:math> {A:D(A)\\subset X\\rightarrow X} be an (possibly unbounded) operator that generates a uniformly bounded holomorphic semigroup. Suppose that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ε</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> {\\varepsilon>0} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>T</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> {T>0} are two given constants. The backward parabolic equation of finding a function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>u</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mi>X</m:mi> </m:mrow> </m:mrow> </m:math> {u:[0,T]\\rightarrow X} satisfying <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mi>t</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo></m:mo> <m:mi>u</m:mi> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>t</m:mi> <m:mo><</m:mo> <m:mi>T</m:mi> </m:mrow> </m:mrow> <m:mo rspace=\"5.3pt\">,</m:mo> <m:mrow> <m:mrow> <m:mo>∥</m:mo> <m:mrow> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>-</m:mo> <m:mi>φ</m:mi> </m:mrow> <m:mo>∥</m:mo> </m:mrow> <m:mo>⩽</m:mo> <m:mi>ε</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> u_{t}+Au=0,\\quad 0<t<T,\\;\\|u(T)-\\varphi\\|\\leqslant\\varepsilon, for φ in X , is regularized by the generalized Sobolev equation <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo></m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>α</m:mi> </m:msub> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mi>α</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>t</m:mi> <m:mo><</m:mo> <m:mi>T</m:mi> </m:mrow> </m:mrow> <m:mo rspace=\"5.3pt\">,</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mi>α</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mi>φ</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> u_{\\alpha t}+A_{\\alpha}u_{\\alpha}=0,\\quad 0<t<T,\\;u_{\\alpha}(T)=\\varphi, where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>α</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> {0<\\alpha<1} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>α</m:mi> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>I</m:mi> <m:mo>+</m:mo> <m:mrow> <m:mi>α</m:mi> <m:mo></m:mo> <m:msup> <m:mi>A</m:mi> <m:mi>b</m:mi> </m:msup> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:mrow> </m:mrow> </m:math> {A_{\\alpha}=A(I+\\alpha A^{b})^{-1}} with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>b</m:mi> <m:mo>⩾</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> {b\\geqslant 1} . Error estimates of the method with respect to the noise level are proved.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"7 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0046","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let X be a Banach space with norm ∥⋅∥ {\|\cdot\|} . Let A:D(A)⊂X→X {A:D(A)\subset X\rightarrow X} be an (possibly unbounded) operator that generates a uniformly bounded holomorphic semigroup. Suppose that ε>0 {\varepsilon>0} and T>0 {T>0} are two given constants. The backward parabolic equation of finding a function u:[0,T]→X {u:[0,T]\rightarrow X} satisfying ut+Au=0,0<t<T,∥u(T)-φ∥⩽ε, u_{t}+Au=0,\quad 0uαt+Aαuα=0,0<t<T,uα(T)=φ, u_{\alpha t}+A_{\alpha}u_{\alpha}=0,\quad 00<α<1 {0<\alpha<1} and Aα=A(I+αAb)-1 {A_{\alpha}=A(I+\alpha A^{b})^{-1}} with b⩾1 {b\geqslant 1} . Error estimates of the method with respect to the noise level are proved.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography