RECOMM. Measuring resilient communities: An analytical and predictive tool

IF 1.6 0 ARCHITECTURE
Silvio Carta, Tommaso Turchi, Luigi Pintacuda, Ljubomir Jankovic
{"title":"RECOMM. Measuring resilient communities: An analytical and predictive tool","authors":"Silvio Carta, Tommaso Turchi, Luigi Pintacuda, Ljubomir Jankovic","doi":"10.1177/14780771231174891","DOIUrl":null,"url":null,"abstract":"We present initial findings of our project RECOMM: an analytical tool that evaluates the resilience of urban areas. The tool utilises Deep Neural Networks to identify characteristics of resilience and assigns a resilience score to different urban areas based on the proximity to certain features such as green spaces, buildings, natural elements and infrastructure. The tool also identifies which urban morphological factors have the greatest impact on resilience. The method uses Convolutional Neural Networks with the Keras library on Tensorflow for calculations and the results are displayed in an online demo built with Node.js and React.js. This work contributes to the analysis and design of sustainable cities and communities by offering a tool to assess resilience through urban form.","PeriodicalId":45139,"journal":{"name":"International Journal of Architectural Computing","volume":"17 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Architectural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14780771231174891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

We present initial findings of our project RECOMM: an analytical tool that evaluates the resilience of urban areas. The tool utilises Deep Neural Networks to identify characteristics of resilience and assigns a resilience score to different urban areas based on the proximity to certain features such as green spaces, buildings, natural elements and infrastructure. The tool also identifies which urban morphological factors have the greatest impact on resilience. The method uses Convolutional Neural Networks with the Keras library on Tensorflow for calculations and the results are displayed in an online demo built with Node.js and React.js. This work contributes to the analysis and design of sustainable cities and communities by offering a tool to assess resilience through urban form.
RECOMM。衡量弹性社区:一种分析和预测工具
我们介绍了我们的项目RECOMM的初步发现:一个评估城市地区弹性的分析工具。该工具利用深度神经网络来识别弹性特征,并根据与绿地、建筑、自然元素和基础设施等特定特征的接近程度,为不同的城市地区分配弹性分数。该工具还确定了哪些城市形态因素对复原力的影响最大。该方法使用卷积神经网络和Tensorflow上的Keras库进行计算,结果显示在使用Node.js和React.js构建的在线演示中。这项工作提供了一种通过城市形态评估韧性的工具,有助于可持续城市和社区的分析和设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
17.60%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信