Decoupled knowledge distillation method based on meta-learning

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Wenqing Du , Liting Geng , Jianxiong Liu , Zhigang Zhao , Chunxiao Wang , Jidong Huo
{"title":"Decoupled knowledge distillation method based on meta-learning","authors":"Wenqing Du ,&nbsp;Liting Geng ,&nbsp;Jianxiong Liu ,&nbsp;Zhigang Zhao ,&nbsp;Chunxiao Wang ,&nbsp;Jidong Huo","doi":"10.1016/j.hcc.2023.100164","DOIUrl":null,"url":null,"abstract":"<div><p>With the advancement of deep learning techniques, the number of model parameters has been increasing, leading to significant memory consumption and limits in the deployment of such models in real-time applications. To reduce the number of model parameters and enhance the generalization capability of neural networks, we propose a method called Decoupled MetaDistil, which involves decoupled meta-distillation. This method utilizes meta-learning to guide the teacher model and dynamically adjusts the knowledge transfer strategy based on feedback from the student model, thereby improving the generalization ability. Furthermore, we introduce a decoupled loss method to explicitly transfer positive sample knowledge and explore the potential of negative samples knowledge. Extensive experiments demonstrate the effectiveness of our method.</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"4 1","pages":"Article 100164"},"PeriodicalIF":3.2000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667295223000624/pdfft?md5=716f214f6655f84938b0daddee4b5296&pid=1-s2.0-S2667295223000624-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295223000624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of deep learning techniques, the number of model parameters has been increasing, leading to significant memory consumption and limits in the deployment of such models in real-time applications. To reduce the number of model parameters and enhance the generalization capability of neural networks, we propose a method called Decoupled MetaDistil, which involves decoupled meta-distillation. This method utilizes meta-learning to guide the teacher model and dynamically adjusts the knowledge transfer strategy based on feedback from the student model, thereby improving the generalization ability. Furthermore, we introduce a decoupled loss method to explicitly transfer positive sample knowledge and explore the potential of negative samples knowledge. Extensive experiments demonstrate the effectiveness of our method.

基于元学习的解耦知识蒸馏方法
随着深度学习技术的进步,模型参数的数量不断增加,导致大量的内存消耗,并限制了这些模型在实时应用中的部署。为了减少模型参数的数量,提高神经网络的泛化能力,提出了一种解耦元蒸馏方法。该方法利用元学习来指导教师模型,并根据学生模型的反馈动态调整知识迁移策略,从而提高泛化能力。此外,我们引入了一种解耦损失方法来显式传递正样本知识,并探索了负样本知识的潜力。大量的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信