{"title":"Insight into the peroxygenase activity of lytic polysaccharide monooxygenases (LPMO): Recent progress and mechanistic understanding","authors":"Wa Gao, Heng Yin","doi":"10.1063/5.0161517","DOIUrl":null,"url":null,"abstract":"The discovery of lytic polysaccharide monooxygenases (LPMOs) as monocopper enzymes for the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides has revolutionized our understanding of enzymatic biomass conversion. In recent years, the debate regarding whether LPMOs function as monooxygenases or peroxygenases has generated significant interest due to its implications for understanding the mechanisms involved in LPMO-mediated lignocellulosic biomass conversion. This review provides a comprehensive analysis of theoretical calculations and kinetic studies, offering a detailed examination of the catalytic mechanism of LPMOs from a physicochemical perspective. By reviewing theoretical investigations focused on the activation of O2/H2O2 and its impact on LPMO monooxygenase/peroxygenase activity, this review aims to inspire novel insight and innovative approaches for exploring the intricate mechanism of LPMOs.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":"29 1","pages":"0"},"PeriodicalIF":6.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical physics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0161517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of lytic polysaccharide monooxygenases (LPMOs) as monocopper enzymes for the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides has revolutionized our understanding of enzymatic biomass conversion. In recent years, the debate regarding whether LPMOs function as monooxygenases or peroxygenases has generated significant interest due to its implications for understanding the mechanisms involved in LPMO-mediated lignocellulosic biomass conversion. This review provides a comprehensive analysis of theoretical calculations and kinetic studies, offering a detailed examination of the catalytic mechanism of LPMOs from a physicochemical perspective. By reviewing theoretical investigations focused on the activation of O2/H2O2 and its impact on LPMO monooxygenase/peroxygenase activity, this review aims to inspire novel insight and innovative approaches for exploring the intricate mechanism of LPMOs.