{"title":"New Developments in High-Frequency Passives [From the Editor]","authors":"Ashok Bindra","doi":"10.1109/mpel.2023.3303831","DOIUrl":null,"url":null,"abstract":"<fig orientation=\"portrait\" position=\"float\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"> <graphic orientation=\"portrait\" position=\"float\" xlink:href=\"bindr-3303831.tif\"/> </fig> In last ten years or so, wide bandgap (WBG) semiconductors have made significant progress that has resulted in rapid miniaturization with improved efficiency of power converters. Concurrently, the improvements in passive components, especially magnetics, such as inductors and transformers, have not kept pace with these advancements. While advances in WBG devices have certainly improved circuit efficiency and power density, the bottleneck now lies with magnetic components, with magnetics accounting for more than 30% of the cost and more than 30% of the loss in almost all power converters, according to experts. Magnetics design has become a critical issue for power electronics as trends towards high efficiency and high power-density continues.","PeriodicalId":13049,"journal":{"name":"IEEE Power Electronics Magazine","volume":"25 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power Electronics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mpel.2023.3303831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In last ten years or so, wide bandgap (WBG) semiconductors have made significant progress that has resulted in rapid miniaturization with improved efficiency of power converters. Concurrently, the improvements in passive components, especially magnetics, such as inductors and transformers, have not kept pace with these advancements. While advances in WBG devices have certainly improved circuit efficiency and power density, the bottleneck now lies with magnetic components, with magnetics accounting for more than 30% of the cost and more than 30% of the loss in almost all power converters, according to experts. Magnetics design has become a critical issue for power electronics as trends towards high efficiency and high power-density continues.