Manoel Veríssimo dos Santos Neto, Nádia Félix F. da Silva, Anderson da Silva Soares
{"title":"A survey and study impact of tweet sentiment analysis via transfer learning in low resource scenarios","authors":"Manoel Veríssimo dos Santos Neto, Nádia Félix F. da Silva, Anderson da Silva Soares","doi":"10.1007/s10579-023-09687-8","DOIUrl":null,"url":null,"abstract":"Sentiment analysis (SA) is a study area focused on obtaining contextual polarity from the text. Currently, deep learning has obtained outstanding results in this task. However, much annotated data are necessary to train these algorithms, and obtaining this data is expensive and difficult. In the context of low-resource scenarios, this problem is even more significant because there are little available data. Transfer learning (TL) can be used to minimize this problem because it is possible to develop some architectures using fewer data. Language models are a way of applying TL in natural language processing (NLP), and they have achieved competitive results. Nevertheless, some models need many hours of training using many computational resources, and in some contexts, people and organizations do not have the resources to do this. In this paper, we explore the models BERT (Pretraining of Deep Bidirectional Transformers for Language Understanding), MultiFiT (Efficient Multilingual Language Model Fine-tuning), ALBERT (A Lite BERT for Self-supervised Learning of Language Representations), and RoBERTa (A Robustly Optimized BERT Pretraining Approach). In all of our experiments, these models obtain better results than CNN (convolutional neural network) and LSTM (Long Short Term Memory) models. To MultiFiT and RoBERTa models, we propose a pretrained language model (PTLM) using Twitter data. Using this approach, we obtained competitive results compared with the models trained in formal language datasets. The main goal is to show the impacts of TL and language models comparing results with other techniques and showing the computational costs of using these approaches.","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"21 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language Resources and Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10579-023-09687-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Sentiment analysis (SA) is a study area focused on obtaining contextual polarity from the text. Currently, deep learning has obtained outstanding results in this task. However, much annotated data are necessary to train these algorithms, and obtaining this data is expensive and difficult. In the context of low-resource scenarios, this problem is even more significant because there are little available data. Transfer learning (TL) can be used to minimize this problem because it is possible to develop some architectures using fewer data. Language models are a way of applying TL in natural language processing (NLP), and they have achieved competitive results. Nevertheless, some models need many hours of training using many computational resources, and in some contexts, people and organizations do not have the resources to do this. In this paper, we explore the models BERT (Pretraining of Deep Bidirectional Transformers for Language Understanding), MultiFiT (Efficient Multilingual Language Model Fine-tuning), ALBERT (A Lite BERT for Self-supervised Learning of Language Representations), and RoBERTa (A Robustly Optimized BERT Pretraining Approach). In all of our experiments, these models obtain better results than CNN (convolutional neural network) and LSTM (Long Short Term Memory) models. To MultiFiT and RoBERTa models, we propose a pretrained language model (PTLM) using Twitter data. Using this approach, we obtained competitive results compared with the models trained in formal language datasets. The main goal is to show the impacts of TL and language models comparing results with other techniques and showing the computational costs of using these approaches.
期刊介绍:
Language Resources and Evaluation is the first publication devoted to the acquisition, creation, annotation, and use of language resources, together with methods for evaluation of resources, technologies, and applications.
Language resources include language data and descriptions in machine readable form used to assist and augment language processing applications, such as written or spoken corpora and lexica, multimodal resources, grammars, terminology or domain specific databases and dictionaries, ontologies, multimedia databases, etc., as well as basic software tools for their acquisition, preparation, annotation, management, customization, and use.
Evaluation of language resources concerns assessing the state-of-the-art for a given technology, comparing different approaches to a given problem, assessing the availability of resources and technologies for a given application, benchmarking, and assessing system usability and user satisfaction.