{"title":"Crystallization Behavior of Ceritinib: Characterization and Optimization Strategies","authors":"Iva Zokić, Jasna Prlić Kardum","doi":"10.3390/chemengineering7050084","DOIUrl":null,"url":null,"abstract":"Because of the specific thermodynamic properties of active pharmaceutical ingredients, the process of crystallization often meets implementation challenges in the pharmaceutical industry. Therefore, it is essential to select the appropriate method and system for the crystallization of a drug. Ceritinib, an active ingredient in the treatment of lung cancer, was formed as a result of pH modification during the cooling crystallization of ceritinib dihydrochloride solution. By carrying out processes in various solvent systems, several polymorphs were produced. A combination of forms B and C was generated in the ethanol–water system, resulting in smaller crystals. The acetone–water system produced pure form A, which has larger crystals and is more applicable for forthcoming studies. To additionally enhance granulometric properties, ceritinib form A was recrystallized in tetrahydrofuran at different temperatures using antisolvent crystallization. Crystallization at a higher saturation temperature results in larger and more compact crystals, which enhances filtration and drying.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":"55 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7050084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Because of the specific thermodynamic properties of active pharmaceutical ingredients, the process of crystallization often meets implementation challenges in the pharmaceutical industry. Therefore, it is essential to select the appropriate method and system for the crystallization of a drug. Ceritinib, an active ingredient in the treatment of lung cancer, was formed as a result of pH modification during the cooling crystallization of ceritinib dihydrochloride solution. By carrying out processes in various solvent systems, several polymorphs were produced. A combination of forms B and C was generated in the ethanol–water system, resulting in smaller crystals. The acetone–water system produced pure form A, which has larger crystals and is more applicable for forthcoming studies. To additionally enhance granulometric properties, ceritinib form A was recrystallized in tetrahydrofuran at different temperatures using antisolvent crystallization. Crystallization at a higher saturation temperature results in larger and more compact crystals, which enhances filtration and drying.