{"title":"Self-Induced Large-Scale Motions in a Three-Dimensional Diffuser","authors":"Arnau Miró, Benet Eiximeno, Ivette Rodríguez, Oriol Lehmkuhl","doi":"10.1007/s10494-023-00483-6","DOIUrl":null,"url":null,"abstract":"<div><p>A direct numerical simulation of a three-dimensional diffuser at Reynolds number <i>Re</i> = 10,000 (based on inlet bulk velocity) has been performed using a low-dissipation finite element code. The geometry chosen for this work is the Stanford diffuser, introduced by Cherry et al. (Int. J. Heat Fluid Flow 29:803–811, 2008). Results have been exhaustively compared with the published data with a quite good agreement. Additionally, further turbulent statistics have been provided such as the Reynolds stresses or the turbulent kinetic energy. A proper orthogonal decomposition and a dynamic mode decomposition analyses of the main flow variables have been performed to identify the main characteristics of the large-scale motions. A combined, self-induced movement of the large-scales has been found to originate in the top-right expansion corner with two clear features. A low-frequency diagonal cross-stream travelling wave first reported by Malm et al. (J. Fluid Mech. 699:320–351, 2012), has been clearly identified in the spatial modes of the stream-wise velocity components and the pressure, associated with the narrow band frequency of <span>\\(St \\in [0.083,0.01]\\)</span>. This movement is caused by the geometrical expansion of the diffuser in the cross-stream direction. A second low-frequency trait has been identified associated with the persisting secondary flows and acting as a back and forth global accelerating-decelerating motion located on the straight area of the diffuser, with associated frequencies of <span>\\(St < 0.005\\)</span>. The smallest frequency observed in this work has been <span>\\(St = 0.0013\\)</span>. This low-frequency observed in the Stanford diffuser points out the need for longer simulations in order to obtain further turbulent statistics.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"112 1","pages":"303 - 320"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-023-00483-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-023-00483-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
A direct numerical simulation of a three-dimensional diffuser at Reynolds number Re = 10,000 (based on inlet bulk velocity) has been performed using a low-dissipation finite element code. The geometry chosen for this work is the Stanford diffuser, introduced by Cherry et al. (Int. J. Heat Fluid Flow 29:803–811, 2008). Results have been exhaustively compared with the published data with a quite good agreement. Additionally, further turbulent statistics have been provided such as the Reynolds stresses or the turbulent kinetic energy. A proper orthogonal decomposition and a dynamic mode decomposition analyses of the main flow variables have been performed to identify the main characteristics of the large-scale motions. A combined, self-induced movement of the large-scales has been found to originate in the top-right expansion corner with two clear features. A low-frequency diagonal cross-stream travelling wave first reported by Malm et al. (J. Fluid Mech. 699:320–351, 2012), has been clearly identified in the spatial modes of the stream-wise velocity components and the pressure, associated with the narrow band frequency of \(St \in [0.083,0.01]\). This movement is caused by the geometrical expansion of the diffuser in the cross-stream direction. A second low-frequency trait has been identified associated with the persisting secondary flows and acting as a back and forth global accelerating-decelerating motion located on the straight area of the diffuser, with associated frequencies of \(St < 0.005\). The smallest frequency observed in this work has been \(St = 0.0013\). This low-frequency observed in the Stanford diffuser points out the need for longer simulations in order to obtain further turbulent statistics.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.